The Leap to Zero Carbon: Preparing for the 2030 Challenge

Defining the FIRST STEPS to Carbon Neutral Design

Professor Terri Meyer Boake

Associate Director | School of Architecture | University of Waterloo Past President Society of Building Science Educators Member OAA Committee for Sustainable Built Environment

Overview:

Designing to Zero Carbon standards as defined by the Architecture2030 Challenge, requires a modified approach to current sustainable and high performance design methods. This session will answer the question "What is Zero Carbon?" and through a series of key case studies differentiate the means by which sustainable/high performance and low carbon buildings are designed. Case studies will be used to demonstrate how new lowcarbon strategies and systems are incorporated to reduce GHG emissions.

Learning Objectives

- Differentiate between sustainable design and carbon neutral (zero carbon) design.
- Incorporate comprehensive sustainable strategies into their projects based upon bioclimatic considerations that respond to passive environmental design basics.
- Prioritize the critical design issues and questions to meet advanced sustainable design targets, leading to the potential to incorporate zero energy/zero emissions and carbon neutral.
- Identify key strategies that must be included in architectural design in order to design buildings to carbon neutral, zero energy standards.
- Assess the architectural implications and potential of including Zero Carbon/Zero Energy strategies, materials and methods in a project.

Global Warming and Sustainable Design:

 A priority has been placed, above and beyond current trends in Sustainable Design, on the reduction of GHG emissions

- Buildings account for more than 40% of the GHG
- Green, Sustainable and High Performance Buildings are not going far enough, quickly enough in reducing their negative impact on the environment, and certainly not far enough to offset the balance of building that marches on in ignorance
- Carbon Neutrality focuses on the relationship between all aspects of "building/s" and CO₂ emissions
- Carbon Neutral Design strives to reverse trends in Global Warming

Differentiating Sustainable vs. Zero Carbon/Carbon Neutral:

Sustainable design is a *holistic* way of designing buildings to minimize their environmental impact through:

- Reduced dependency on non-renewable resources
- A more bio-regional response to climate and site
- Increased efficiency in the design of the building envelope and energy systems
- A environmentally sensitive use of materials
- Focus on healthy interior environments
- Characterized by buildings that aim to *"live lightly on the earth"* and

- "Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs."

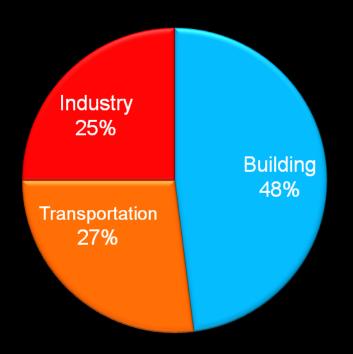
United Nations World Commission on Environment and Development

From ZED to Carbon Neutral

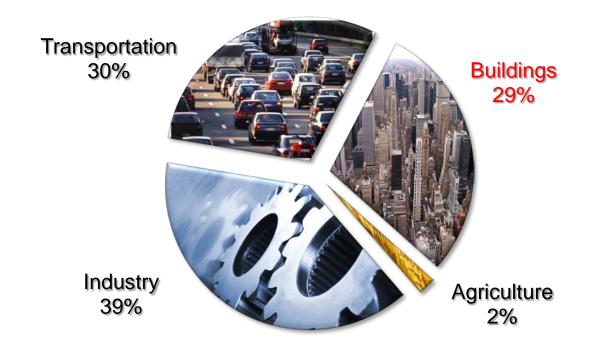
- A **Near Zero Energy** building produces at least 75% of its required energy through the use of onsite renewable energy. Off-grid buildings that use some non-renewable energy generation for backup are considered near zero energy buildings because they typically cannot export excess renewable generation to account for fossil fuel energy use.
- A **Carbon Neutral Building** derives 100% of its energy from non fossil fuel based renewables.

Why Assess Carbon Neutrality?

- Sustainable design does not go far enough
- Assessing carbon is complex, but necessary
- The next important goal to reverse the effects of global warming and reduce CO² emissions it to make our buildings "carbon neutral"


"architecture2030" is focused on raising the stakes in sustainable design to challenge designers to reduce their carbon emissions
 by 50% by the year 2030

www.architecture2030.org


Energy Use by Developed Countries

70

The Global Warming Pie....

These values look at <u>Secondary Energy Use by Sector in Canada</u> (2006) (energy used by the final consumer i.e. operating energy)

The LEAP to Zero Carbon and beyond...

Energy Efficient (mid 1970s "Oil Crisis" reaction)

- High Performance (accountable)
- >Green (environmentally responsive)
 - Sustainable (holistic and accountable)
- Carbon Neutral (Zero Fossil Fuel Energy)
- Restorative
- Regenerative (Living Buildings)

...a steady increase in the nature and expectations of performance criteria

Fossil Fuel Reduction Standard:

The fossil fuel **reduction standard** for all **new buildings** shall be increased to:

60% in 2010 70% in 2015 80% in 2020 90% in 2025 **Carbon-neutral in 2030** (using no fossil fuel GHG emitting energy to **operate**).

Source: www.architecture2030.org

2030 Targets - Commercial

2030 CHALLENGE Targets: National Averages

U.S. Average Site Energy Use and 2030 Challenge Energy Reduction Targets by Space/Building Type (CBECS 2003)¹

Primary Space/Building Type ²	Available		Average Percent Electric	Average Site EUI ⁴ (kBtu/Sq.Ft./Yr)	2030 Challenge Site EUI Targets (kBtu/Sq.Ft./Yr)				
	in Target Finder ³				50% Target	60% Target	70% Target	80% Target	90% Target
Administrative/Professional & Government Office	√								
Bank	√								
Clinic/other outpatient health		219	76%	84.2	42.1	33.7	25.3	16.8	8.4
College/university (campus-level)		280	63%	120	60	48	36	24	12
Convenience store (with or without gas station)		753	90%	241.4	120.7	96.6	72.4	48.3	24.1
Distribution/shipping center		90	61%	44.2	22.1	17.7	13.3	8.8	4.4
Fast food		1306	64%	534.3	267.2	213.7	160.3	106.9	53.4
Fire station/police station		157	56%	77.9	39.0	31.2	23.4	15.6	7.8
Hospital/inpatient health	√								
Hotel, Motel or inn	√								
K-12 School	1								
Medical Office	1								

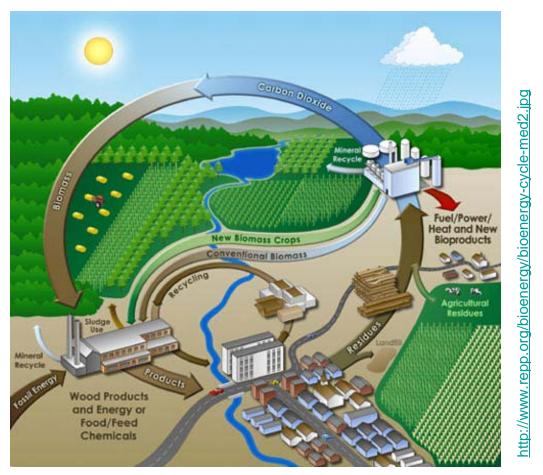
From the Environmental Protection Agency (EPA): Use this chart to find the site fossil-fuel energy targets.

Target Finder is an online tool:

http://www.energystar.gov/index.cfm?c=new_bldg_design.bus_target_finder

2030 Targets – Residential:

2030 CHALLENGE Targets: Residential Regional Averages


U.S. Regional Averages for Site Energy Use and 2030 Challenge Energy Reduction Targets by Residentail Space/Building Type (RECS 2001)¹ From the Environmental Protection Agency (EPA): Use this chart to find the site fossil-fuel energy targets.

	Average	Average Site EUI ^{3.5} (kBtu/Sq.Ft./Yr)	2030 Challenge Site EUI Targets (kBtu/Sq.Ft./Yr)						
Residential Space/Building Type ²	Source EUI ^{3, 4} (kBtu/Sq.Ft./Yr)		50% Target	60% Target	70% Target	80% Target	90% Target		
Northeast									
Single-Family Detached	67.5	45.7	22.9	18.3	13.7	9.1	4.6		
Single-Family Attached	68.6	50.3	25.1	20.1	15.1	10.1	5.0		
Multi-Family, 2 to 4 units	78.8	57.8	28.9	23.1	17.3	11.6	5.8		
Multi-Family, 5 or more units	98.2	60.7	30.4	24.3	18.2	12.1	6.1		
Mobile Homes	145.5	89.3	44.6	35.7	26.8	17.9	8.9		
Midwest									
Single-Family Detached	76.2	49.5	24.7	19.8	14.8	9.9	4.9		

...etc.

http://www.architecture2030.org/downloads/2030_Challenge_Targets_Res_Regional.pdf

Buildings / Processes and the Carbon Cycle:

As the way that buildings interact with carbon is highly complex, the first aim is to reduce operating energy as it is the most significant and easiest to control.

Fossil Fuel Reduction Standard:

The fossil fuel **reduction standard** for all **new buildings** shall be increased to:

60% in 2010 70% in 2015 80% in 2020 90% in 2025 **Carbon-neutral in 2030** (using no fossil fuel GHG emitting energy to **operate**).

Source: www.architecture2030.org

Operating Energy of Building

80% of the problem!

Landscape + Site

Disturbance vs. sequestration

Embodied Carbon in Building Materials

People, "Use" + Transportation Renewables + Site Generation

Counting Carbon costs....

+ purchased offsets

Energy vs Greenhouse Gas Emissions

In BUILDINGS, for the sake of argument

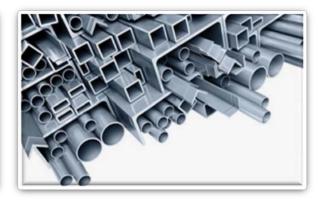
ENERGY CONSUMPTION = GHG EMISSIONS

BUILDING ENERGY IS COMPRISED OF

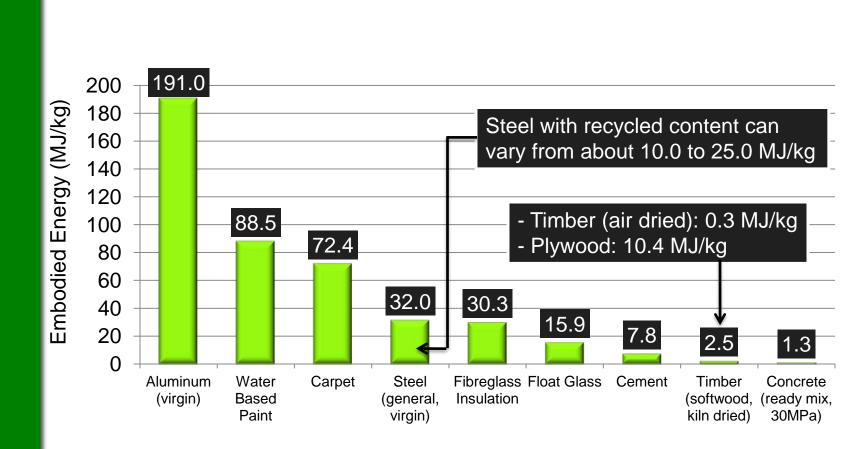
EMBODIED ENERGY + OPERATING ENERGY

Energy Use in Buildings

Embodied Energy

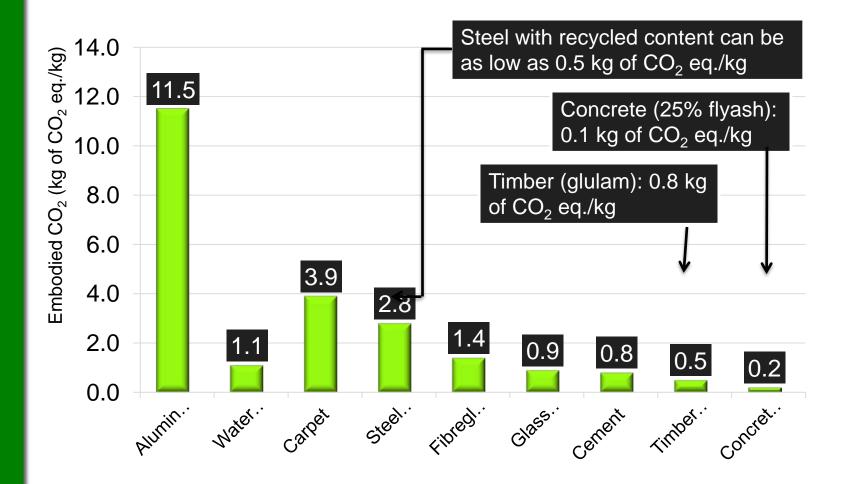

 <u>Initial Embodied Energy</u>: Non-renewable energy consumed in the acquisition of raw materials, their processing, manufacturing, transportation to site, and construction

<u>Recurring Embodied Energy</u>: Non-renewable energy consumed to maintain, repair, restore, refurbish or replace materials, components, or systems during life of building



www.cn-sbs.cssbi.ca

Initial Embodied Energy of Building Materials Per Unit Mass



Source: University of Wellington, NZ, Center for Building Performance Research (2004)

www.cn-sbs.cssbi.ca

Embodied Carbon Dioxide of Building Materials Per Unit Mass

Source: University of Bath, UK, Inventory of Carbon and Energy (2008)

www.cn-sbs.cssbi.ca

The Life Cycle of a Material

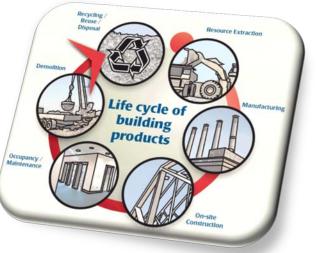
Life-Cycle Assessment (LCA)

 The main goal of a LCA is to quantify energy and material use as well as other environmental parameters at various stages of a product's life-cycle including: resource extraction, manufacturing, construction, operation, and post-use disposal

Life-Cycle Inventory (LCI) Database

 A database that provides a cradle-to-grave accounting of the energy and material flows into and out of the environment that are associated with producing a material. This database is a critical component of a Life-Cycle Assessment

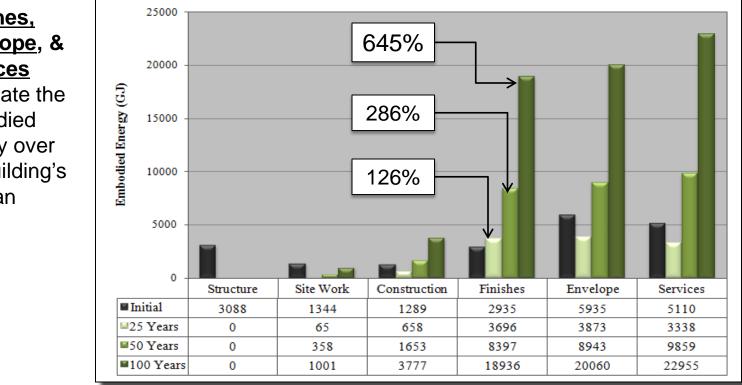
Life Cycle Assessment Methodology


Embodied Energy

<u>ATHENA® Impact Estimator for Buildings</u>

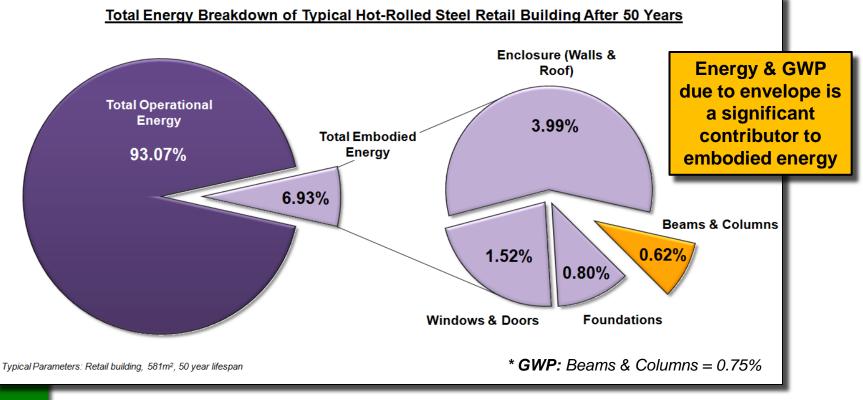
 The only North American specific software tool that evaluates whole buildings and assemblies based on internationally recognized LCA methodology

- Non-profit organization that has been around for more than 10 years
- One of the most comprehensive LCI databases in the world with over \$2 million spent on database development
- Considers the life-cycle impacts of:
- Material manufacturing including resource extraction and recycled content
- ✓ Related transportation
- ✓ On-site construction
- Regional variation in energy use, transportation, and other factors
- ✓ Building type and assumed lifespan
- ✓ Maintenance, repair, and replacement effects
- ✓ Demolition and disposal
- ✓ Operating energy emissions and pre-combustion effects



Source: The ATHENA Institute http://www.athenasmi.org/tools/impactEstimator/index.html

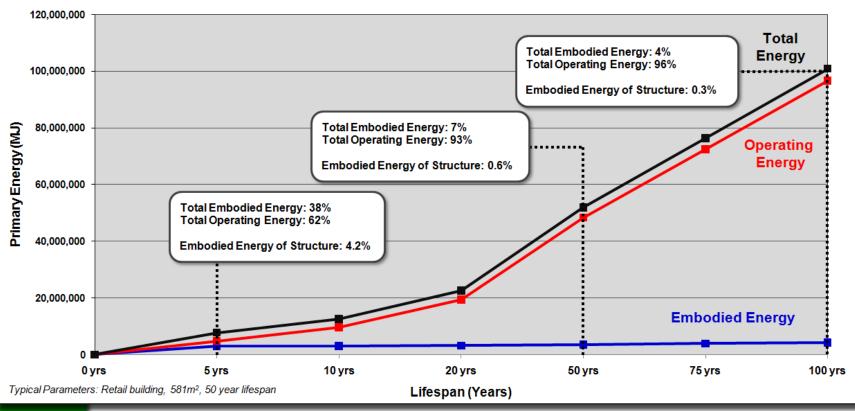
Energy in Common Building Components


Initial Embodied Energy vs. Recurring Embodied Energy of a Typical Canadian Office Building Constructed from Wood

Finishes. Envelope, & Services dominate the embodied energy over the building's lifespan

Orders of Environmental Impact

<u>Total Energy Breakdown of Typical Hot-Rolled Steel Retail</u> <u>Building After 50 Years</u> (other building types are similar)



www.cn-sbs.cssbi.ca

Orders of Environmental Impact

Primary Energy Consumption vs. Time for Hot-Rolled Steel Retail Building (other building types are similar)

Primary Energy Consumption vs. Time for Typical Hot-Rolled Steel Retail Building

Source: Kevin Van Ootegham

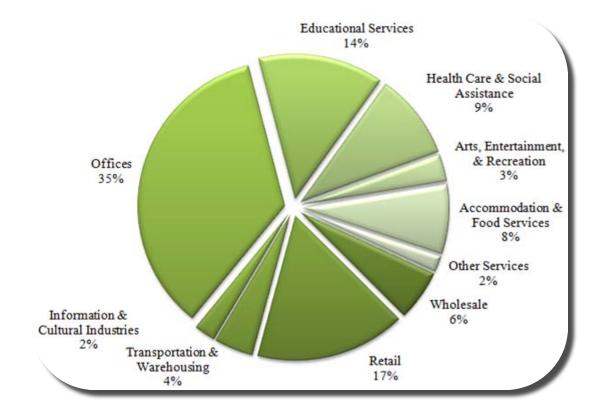
www.cn-sbs.cssbi.ca

Embodied Energy Findings

In conventional buildings, the <u>building envelope</u> (walls and roof), <u>building services</u>, and <u>building finishes</u> contribute the most towards the total <u>embodied</u> life-cycle energy (and total embodied GWP) when looking at the Embodied Energy of the Entire Building, including Structure.

To lower GHG, choice of materials needs to reflect: -issues of **DURABILITY**

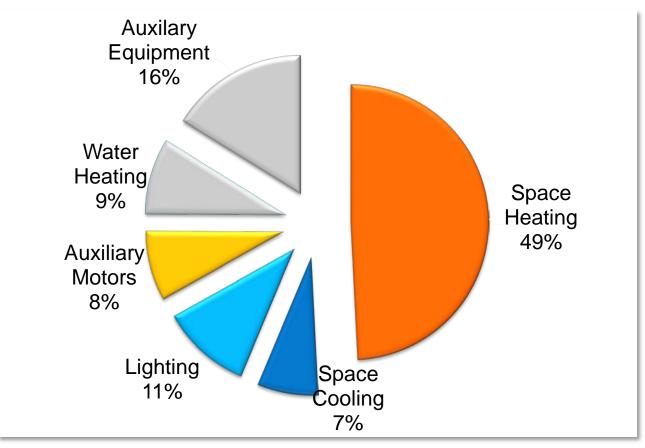
- ability of material to assist **PASSIVE DESIGN**
- local sourcing to reduce **TRANSPORTATION**


- Cradle to Cradle concepts

- ability of material to be 1st **REUSED** and 2nd RECYCLED

Energy Use in Buildings: Operating Energy

Amount of energy that is consumed by a building to satisfy the demand for heating, cooling, lighting, ventilation, equipment, etc.

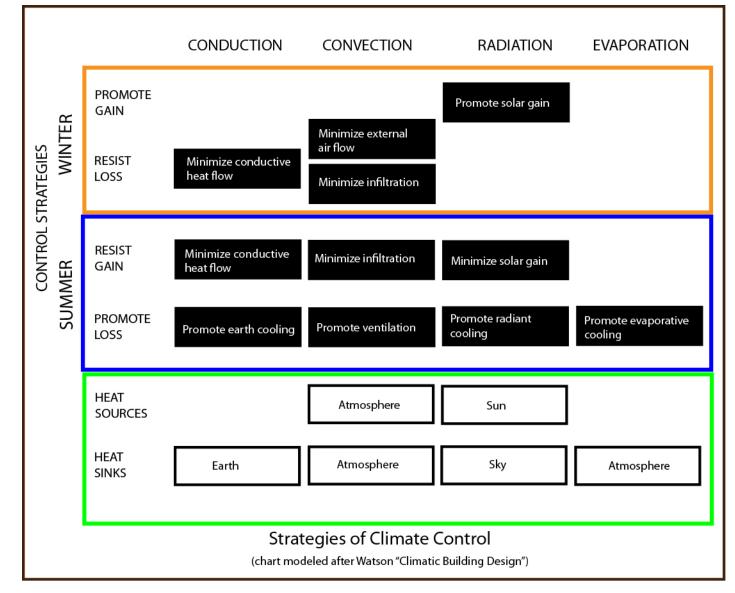

<u>Total Commercial/Institutional Secondary Energy</u> <u>Use by Activity Type in Canada (2006)</u>

Source: Natural Resources Canada, 2006

Energy Use in Buildings: Operating Energy

Source: Natural Resources Canada, 2006

Four Key Steps – IN ORDER:


#1 - Reduce loads/demand first (conservation, passive design, daylighting, shading, orientation, etc.)

#2 - **Meet loads efficiently and effectively** (energy efficient lighting, high-efficiency MEP equipment, controls, etc.)

#3 - **Use renewables to meet energy needs** (doing the above steps *before* will result in the need for much smaller renewable energy systems, making carbon neutrality achievable.)

#4 - **Use purchased Offsets** as a *last resort* when all other means have been looked at on site, or where the scope of building exceeds the site available resources.

Begin with Passive Strategies for Climate Control to Reduce Energy Requirements

HEATING

COOLING

Carbon Reduction: The Tier Approach

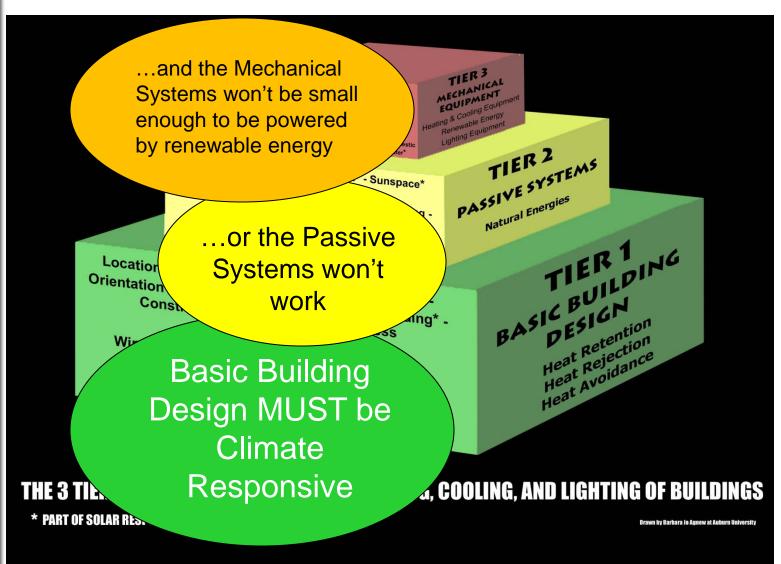
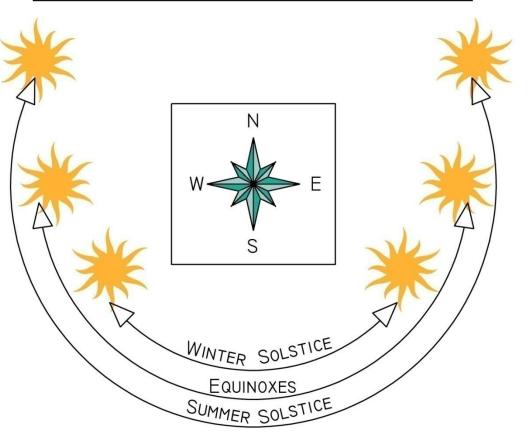
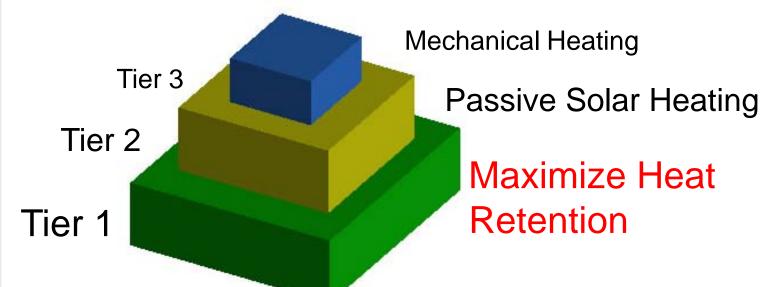



Image: Norbert Lechner, "Heating, Cooling, Lighting"

#1 Starting Point – Locate the SUN


SOLAR AZIMUTH RANGE THROUGHOUT THE YEAR

... and just deal with it!

Reduce loads: Passive Strategies

The tiered approach to reducing carbon for **HEATING**:

First reduce the overall energy required, then maximize the amount of energy required for mechanical heating that comes from renewable sources.

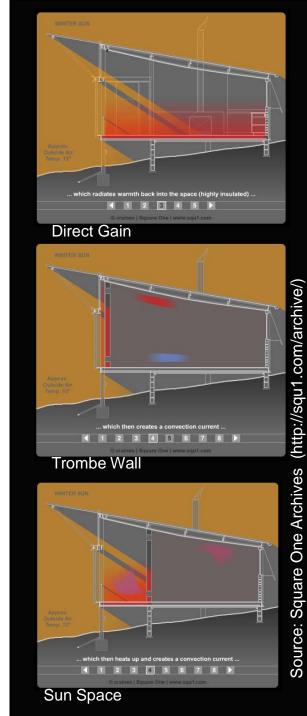
Source: Lechner. Heating, Cooling, Lighting.

Passive Heating Strategies: Maximize Heat Retention

- 1. Super insulated envelope (as high as <u>double</u> current standards)
- 2. Tight envelope / controlled air changes
- 3. Provide thermal mass **inside** of thermal insulation to store heat
- Top quality windows with high R-values up to triple glazed with argon fill and low-e coatings on two surfaces

Premise – what you don't "lose" you don't have to create or power.... So make sure that you keep it! (...NEGAwatts)

Passive Heating Strategies: Maximize Solar Gain


- primarily south facing windows
- proportion windows to suit thermal mass and size of room(s)

3 MAIN STRATEGIES:

Direct Gain

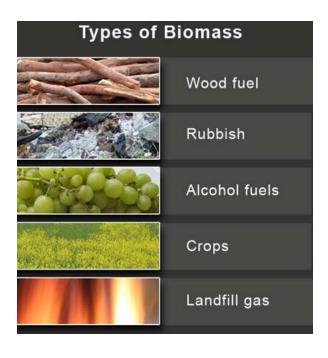
Thermal Storage Wall

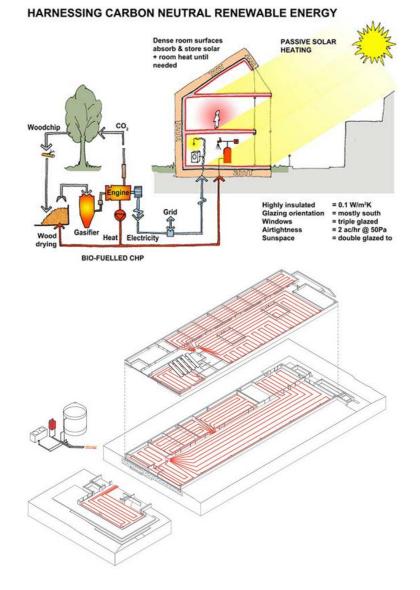
Sunspace

Thermal Mass is Critical!

To ensure comfort to the occupants....

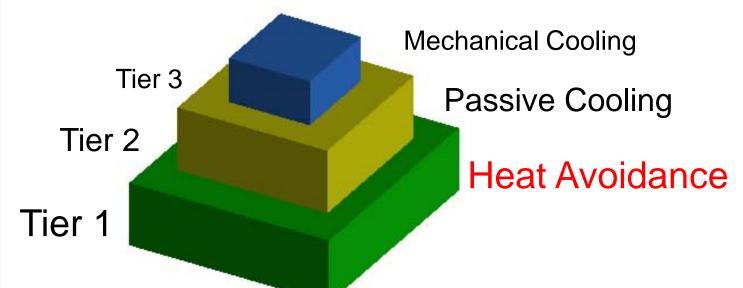
People are 80% water so if they are the only thermal sink in the room, they will be the target.


And to store the FREE energy for slow release distribution....



Aldo Leopold Legacy Center: Concrete floors complement the insulative wood walls

Passive Heating Strategies: Use Renewables for Additional Heating


- Combined heat and power
- Biomass
- Geo exchange systems
- Radiant heating systems
- Verify carbon status of source

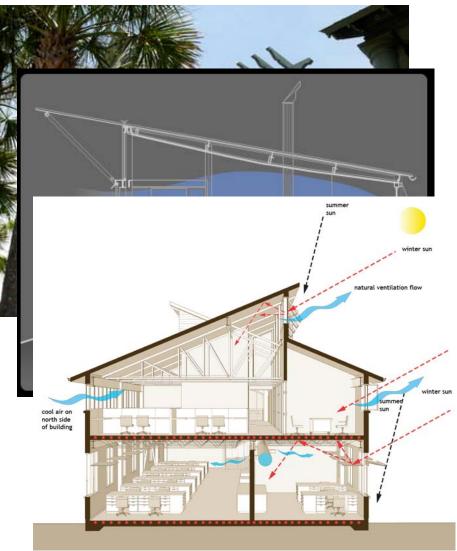
Reduce loads: Passive Strategies

The tiered approach to reducing carbon for **COOLING**:

Maximize the amount of energy required for mechanical cooling that comes from renewable sources.

Source: Lechner. Heating, Cooling, Lighting.

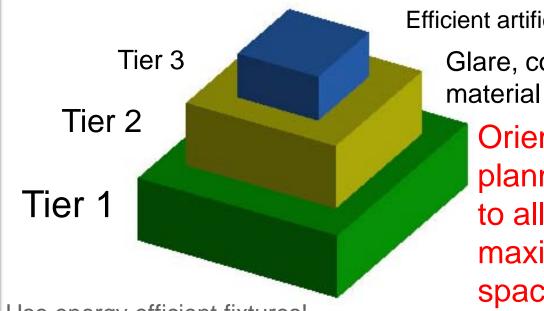
Passive Cooling Strategies: Heat Avoidance


- shade windows from the sun during hot months
- design materials and plantings to cool the local microclimate
- locate trees and trellis' to shade east and west façades during morning and afternoon low sun

If you don't invite the heat in, you don't have to get rid of it.....

Passive Cooling Strategies: Passive Cooling

- 1. design for maximum ventilation
- keep plans as open as possible for unrestricted air flow
- use easily operable windows at low levels with high level clerestory windows to induce stack effect cooling


Passive Cooling Strategies: Use Innovative Means for Cooling

- 1. wind cowls
- 2. solar chimneys
- 3. water features

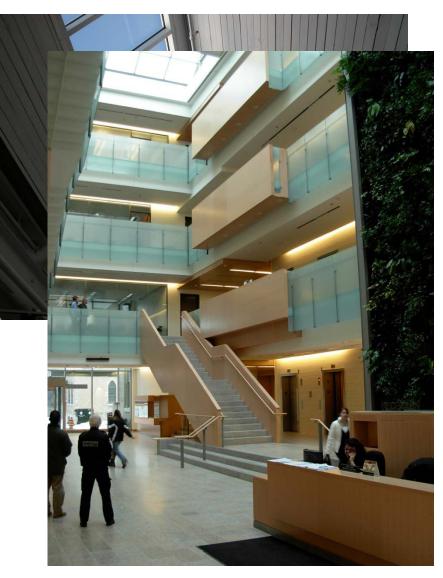
Reduce loads: Daylighting

The tiered approach to reducing carbon with **DAYLIGHTING**:

Efficient artificial Lighting w/ sensors Glare, color, reflectivity and material concerns Orientation and planning of building to allow light to reach maximum no. of spaces

Use energy efficient fixtures!

Maximize the amount of energy/electricity required for artificial lighting that comes from renewable sources.

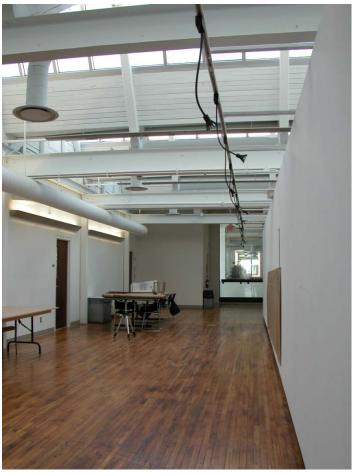

Source: Lechner. Heating, Cooling, Lighting.

Passive Lighting Strategies: Orientation and building planning

- start with solar geometry
- understand context, sky dome, adjacent buildings and potential overshadowing
- be able to differentiate between sunlight (heat) and daylight (seeing)
- understand occupancy/use requirements
- maximize areas served by daylight
- explore different glazing strategies: side, clerestory, top
- consider light shelves and reflected light

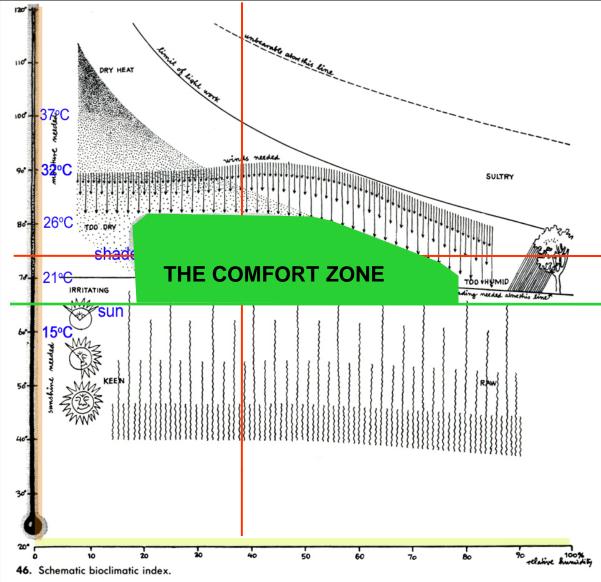
Passive Lighting Strategies: Glare, color, reflectivity and materials

- incorporate light dynamics
- avoid glare
- understand the function of material selection; ie.
 reflectivity and surface qualities
- balance color and
 reflectivity with amount
 of daylight provided


Passive Lighting Strategies: Energy efficiency and renewables

- use energy efficient light fixtures (and effectively!)

- use occupant sensors <u>combined with light level</u> <u>sensors</u>


aim to only have lights
 switch on only when
 daylight is insufficient

provide electricity via
 renewable means: wind,
 PV, CHP

Lights on due to occupant sensors when there is adequate daylight – WASTES ENERGY!

Designing to the Comfort Zone vs. Comfort Point:

This famous illustration is taken from "Design with Climate", by Victor Olgyay, published in 1963.

This is the finite point of expected comfort for 100% mechanical heating and cooling.

To achieve CN, we must work within the broader area AND DECREASE the "line" to 18C – point of calculation of heating degree days.

Passive Bio-climatic Design: COMFORT ZONE

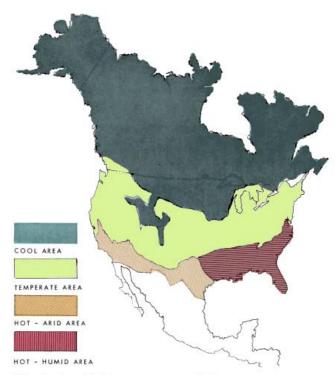
Comfort expectations may have to be reassessed to allow for the wider "zone" that is characteristic of buildings that are not exclusively controlled via mechanical systems.

Creation of new "**buffer spaces**" to make a hierarchy of comfort levels within buildings.

Require **higher occupant involvement** to adjust the building to modify the temperature and air flow.

Climate as the Starting Point for a Climate Responsive Design

North American Bio-climatic Design:

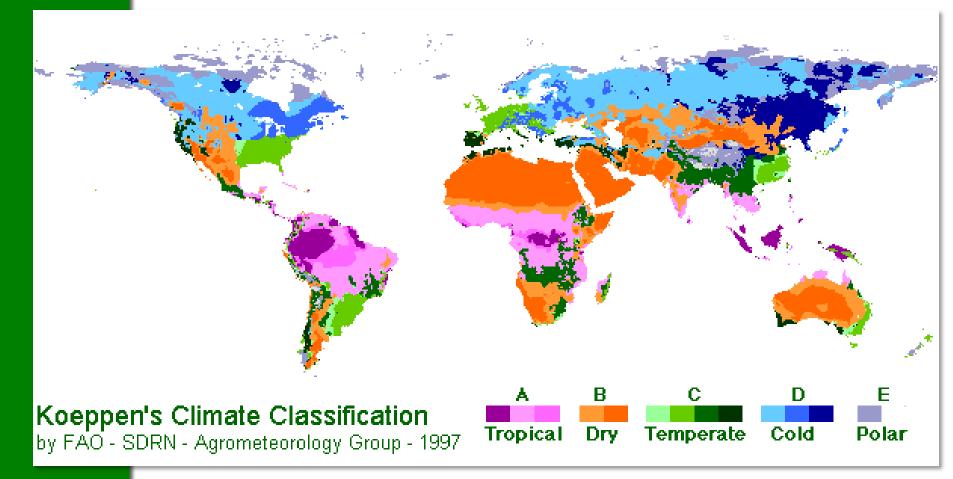

Design must first acknowledge regional, local and microclimate impacts on the building and site.

COLD

TEMPERATE

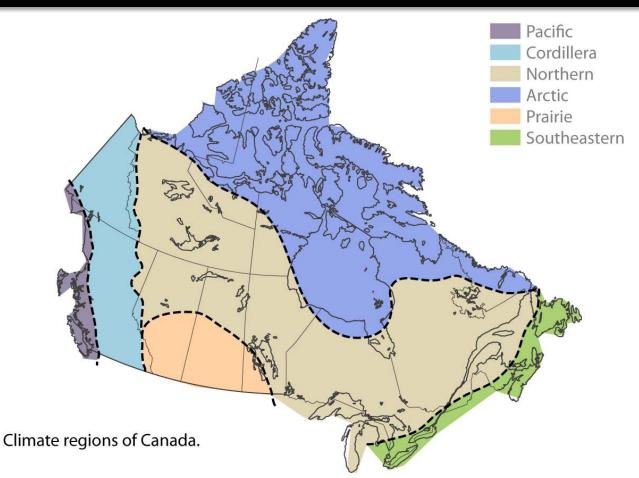
HOT-ARID

HOT-HUMID

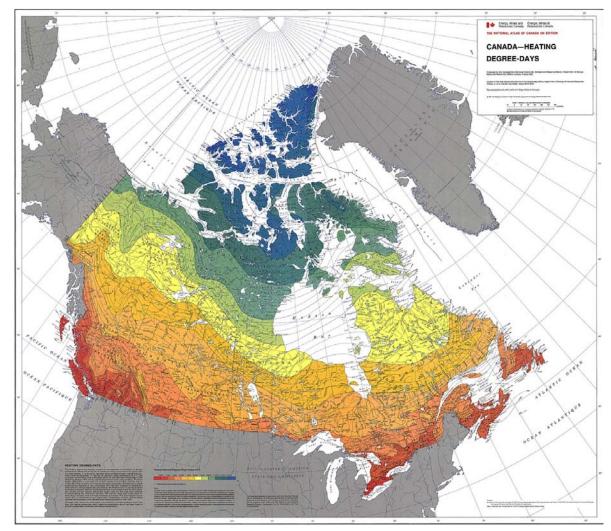


11. Regional climate zones of the North American continent.

Image: 1963 "Design With Climate", Victor Olgyay.


Global Bio-climatic Design:

Design must first acknowledge regional, local and microclimate impacts on the building and site.



The climate regions of Canada

Even within Canada, there exist variations in climate, enough to require very different envelope design practices and regulations. This mostly concerns insulation and water penetration, as well as humidity concerns.

Heating and Cooling Degree Days

This map shows the annual sum of heating degree days (an indicator of building heating needs). Data for period 1941 to 1970. **Determine if the climate is** *heating* **or** *cooling* **dominated** ...this will set out your primary strategy.

The Goal is Reduction

CLIMATE AS THE STARTING POINT FOR RETHINKING ARCHITECTURAL DESIGN

Bio-climatic Design: HOT-ARID

Where very high summer temperatures with great fluctuation predominate with dry conditions throughout the year. Cooling degrees days greatly exceed heating degree days.

RULES:

- SOLAR AVOIDANCE: keep DIRECT SOLAR GAIN out of the building
- avoid daytime ventilation
- promote nighttime flushing with cool evening air
- achieve daylighting by reflectance and use of LIGHT non-heat absorbing colours
- create a cooler MICROCLIMATE by using light / lightweight materials
- respect the DIURNAL CYCLE
- use heavy mass for walls and DO NOT INSULATE

Traditional House in Egypt

Bio-climatic Design: HOT-HUMID

Where warm to hot stable conditions predominate with high humidity throughout the year. Cooling degrees days greatly exceed heating degree days.

RULES:

- **SOLAR AVOIDANCE** : large roofs with overhangs that shade walls and to allow windows open at all times

- PROMOTE VENTILATION

- USE LIGHTWEIGHT MATERIALS that do not hold heat and that will not promote condensation and dampness (mold/mildew)

- eliminate basements and concrete
- use STACK EFFECT to ventilate through high spaces
- use of COURTYARDS and semi-enclosed outside spaces
- use WATER FEATURES for cooling

House in Seaside, Florida

Bio-climatic Design: TEMPERATE

The summers are hot and humid, and the winters are cold. In much of the region the topography is generally flat, allowing cold winter winds to come in form the northwest and cool summer breezes to flow in from the southwest. **The four seasons are almost equally long.**

RULES:

- BALANCE strategies between COLD and HOT-HUMID
- maximize flexibility in order to be able to modify the envelope for varying climatic conditions
- understand the natural benefits of SOLAR ANGLES that shade during the warm months and allow for heating during the cool months

IslandWood Residence, Seattle, WA

Bio-climatic Design: COLD

Where **winter** is the dominant season and concerns for conserving heat predominate all other concerns. Heating degree days greatly exceed cooling degree days.

RULES:

- First INSULATE
- exceed CODE requirements (DOUBLE??)
- minimize infiltration (build tight to reduce air changes)
- Then INSOLATE

- ORIENT AND SITE THE BUILDING PROPERLY FOR THE SUN

- maximize south facing windows for easier control

- fenestrate for **DIRECT GAIN**
- apply **THERMAL MASS** inside the building envelope to store the FREE SOLAR HEAT
- create a sheltered MICROCLIMATE to make it LESS cold

YMCA Environmental Learning Centre, Paradise Lake, Ontario

Reduce, Renew, Offset

And, a *paradigm shift* from the recycling 3Rs...

Reduce - build less, protect natural ecosystems, build smarter, build efficiently

Renew - use renewable energy, restore native ecosystems, replenish natural building materials, use recycled and recyclable materials

Offset - compensate for the carbon you can't eliminate, focus on local offset projects

Net impact reduction of the project!

source: www.buildcarbonneutral.org

The Importance of Impact Reduction:

If the **impact** of the building is NOT reduced, it may be *impossible* to reduce the CO_2 to zero. Because:

Site and location matter.

- Design for bio-regional site and climate
- Orientation for passive heating, cooling and daylighting
- Brownfield or conserved ecosystem?
- Urban, suburban or rural?
- Ability to restore or regenerate ecosystems
- All determine *potential* for carbon sequestration on site

7 Impacts source: <u>www.buildcarbonneutral.org</u>

The buildings at IslandWood are located with a "solar meadow" to their south to take advantage of solar heating and daylighting.

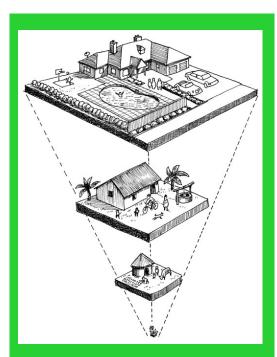
Disturbance is impact.

- Protect existing soil and vegetation
- Design foundations to minimize impact
- Minimize moving of soil
- Disturbance changes existing ecosystems, natural habitats and changes water flow and absorption
- Disturbed soil releases carbon
- Disturbance can kill trees, lowering site potential for carbon reduction
- Look at the potential for reusing materials on site

Difficult foundations for a treed, sloped site for the Grand House Student Cooperative in Cambridge, Ontario, Canada

Natural ecosystems sequester carbon.

- Carbon is naturally stored below ground and is released when soil is disturbed
- Proper treatment of the landscape can keep this carbon in place *(sequestration)*
- Proper treatment of the landscape can be designed to store/accumulate/sequester more carbon over time
- Verify landscape design type with your eco-region – use of indigenous plant material requires less maintenance/water – healthy plants absorb more CO₂
- Possible to use the natural ecosystems on your site to assist in lowering the carbon footprint of your project



The natural site is preserved at IslandWood, Bainbridge Island.

Smaller is better.

- *Simple!*...less building results in less embodied carbon; i.e. less carbon from materials used in the project, less requirements for heating, cooling and electricity....

- Re-examine the building program to see what is *really* required
- How is the space to be used?
- Can the program benefit from more inventive double uses of spaces?
- Can you take advantage of outdoor or more seasonally used spaces?
- How much building do you *really* need?
- Inference of LIFESTYLE changes

Calculating your "ecological footprint"

... can naturally extend to an understanding of your "carbon footprint"

Buildings can help to sequester carbon.

- The materials that you choose can help to reduce your carbon footprint.

- Wood from certified renewable sources, wood harvested from your property, or wood salvaged from demolition and saved from the landfill can often be considered net carbon sinks.

- Planting new trees can help to compensate for the carbon released during essential material transport
- Incorporating *green roofs* and *living walls* can assist in carbon sequestration

Green roof at White Rock Operations Center, White Rock, B.C.

Green roof at Vancouver Public Library

Material choice matters.

- Material choice can reduce your building's *embodied* carbon footprint.

- Where did the material come from?
- Is it local?
- Did it require a lot of energy to extract it or to get it to your building?
- Can it be replaced at the source?
- Was it recycled or have significant post consumer recycled content?
- Can it be recycled or reused *easily;* i.e. with minimal additional energy?
- Is the material durable or will it need to be replaced *(lifecycle analysis)?*

Note: many of these concerns are similar to what you might already be looking at in LEEDTM

Foster's GLA – may claim to be high performance, but it uses many high energy materials.

Green on the Grand, Canada's first C-2000 building chose to import special windows from a distance rather than employ shading devices to control solar gain and glare.

Reuse to reduce impact.

- Reuse of a building, part of a building or elements reduces the carbon impact by avoidance of using new materials.
- Make the changes necessary to improve the operational carbon footprint of an old building, before building new.
- Is there an existing building or Brownfield site that suits your needs?
- Can you adapt a building or site with minimal change?
- Design for disassembly (Dfd) and eventual reuse to offset future carbon use

The School of Architecture at Waterloo is a reused factory on a remediated Brownfield site.

All of the wood cladding at the YMCA Environmental Learning Center, Paradise Lake, Ontario was salvaged from the demolition of an existing building.

Towards Zero Energy \ Zero Carbon:

Carbon Neutral

Zero Energy Design

The ZEDfactory Philosophy...

Key to the necessary paradigm shift required to go ZED, is a re-visioning of priorities for design.

"Architects and engineers say that reaching a zero-energy goal necessarily requires a much more integrated design process than is typical for a conventional building."

Current, unsustainable UK consumption

BedZED: Beddington Zero Energy Development

BedZED, Hackbridge, England, was created as a partnership with the BioRegional Development Group, the Peabody Trust, Bill Dunster Architects, Arup, and Gardiner and Theobald. The 82 houses, 17 apartments, and 1,405 m² of workspace were built between 2000-02. An example of early ZED design.

Climate: temperate, inland

BedZED: Beddington Zero Energy Development

Starts with **basic** sustainable principles of design:

- ORIENTATION
- very high environmental standards
- high thermal insulation levels
- triple glazed windows
- sunlight / daylighting
- solar energy (direct gain + PV)
- reduction of energy consumption
- natural ventilation
- waste water recycling
- strong emphasis on roof gardens
- built from natural, recycled, or reclaimed materials
- reduction in parking pedestrian oriented
- re-allocation of site/use distribution for community's best interests

BedZED: Then goes for Zero Energy.... Density and General Site Strategies

#1.

The development uses a higher density than typical. **#2.**

This separates parking from housing.

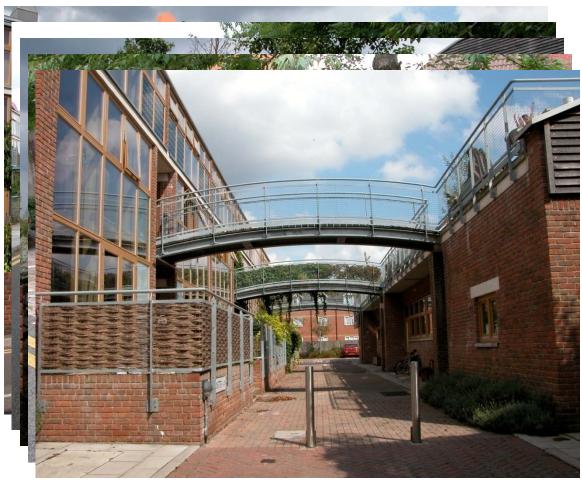
#3.

And consolidates significant green space.

BedZED: Alternative Parking/Car Strategies

#1.

Designed to encourage alternatives to car use.


#2.

A green transport plan promotes walking, cycling, and use of public transport.

#3.

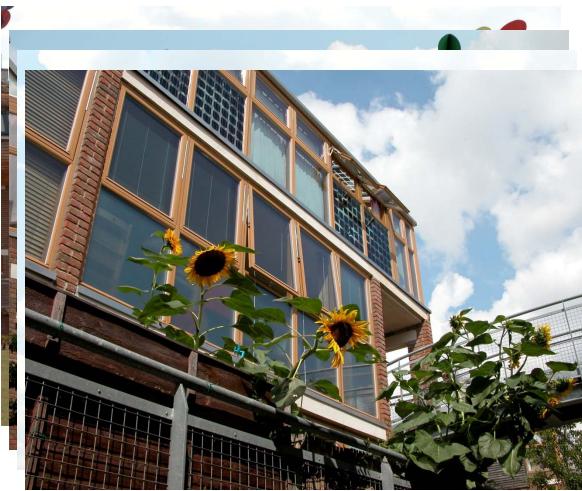
A car pool for residents has been established. BedZED's target is a 50% reduction in fossil-fuel consumption by private car use over the next 10 years compared with a conventional development. **#4.**

A "pedestrian first" policy with good lighting, drop curbs for prams (strollers) and wheelchairs, and a road layout that keeps vehicles to walking speed.

BedZED: Landscape and Vegetation

#1.

Green space divided into large communal spaces + personal gardens/terraces. **#2.**


Green space at grade assists in lowering overall overheating in summer.

#3.

Green space at the roof level is private, and also incorporates seedum roofs.

#4.

Vegetable and edible crops are encouraged.

BedZED: Passive Solar Strategies

#1.

Uses passive solar techniques to maximize heat gain for cool months

#2.

Houses are arranged in south facing terraces to maximize direct solar gain

#3.

Glass is maximized on south face (minimized on north side to prevent losses).

BedZED: Passive Cooling Strategies

#1.

Each terrace is backed by north facing offices, which reduces the tendency to overheat and the need for air conditioning.

#2.

Large quantities of operable windows encourage natural ventilation.

#3.

PV is used to shade windows.

#4.

Wind cowls direct ventilation flow.

No A/C is provided.

BedZED: Non-fossil fuel heating for space and water

Once needs have been reduced passively...

#1.

A centralized heat and power plant (CHP) provides hot water, which is distributed around the site via a district heating system of superinsulated pipes.

#2.

The CHP plant at BedZED is powered by offcuts from tree surgery waste that would otherwise go to landfill.

The target was for zero fossil fuel use.

BedZED: Material choices

#1.

Embodied energy (a measure of the energy required to manufacture a product) was key in choosing materials.

#2.

They were sourced within a 35-mile radius of the site when possible, reducing transportation energy.

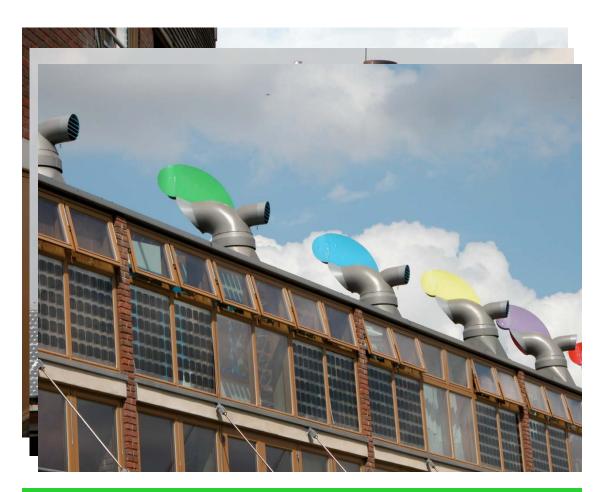
#3.

Recycled materials and high recycled content were key.

75 year minimum target design life.

BedZED: Generation of on Site Electricity

#1.


It was felt to be more efficient to generate electricity with the CHP facility.

#2.

PV panels were targeted at fueling electric vehicles.

#3.

PV was installed over 777m2 and was also used for shading.

Excess electricity is sold back to the grid.

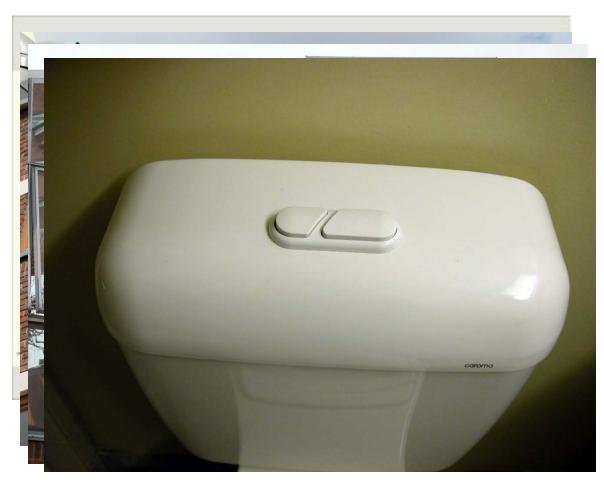
BedZED: Water Systems

Water use is carefully planned...

#1.

Rainwater is collected and used for irrigation and toilet flushing.

#2.


Black water is treated on site and cycled into the irrigation system.

#3.

Dual flush toilets reduce water consumption.

#4.

Shaped bathtubs reduce water requirement.

The target was to cut normal household use by 33%.

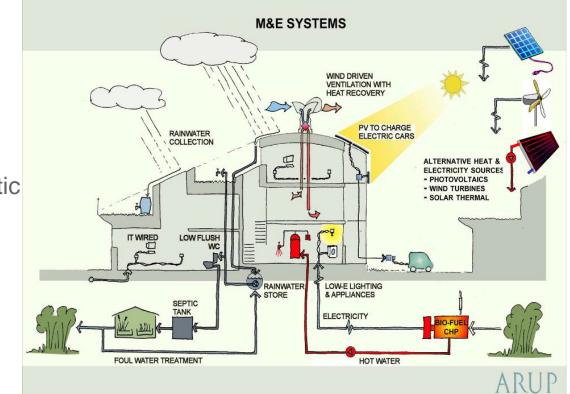
BedZED: Waste Recycling

#1.

Waste recycling collection depots are located throughout the community.

#2.

Kitchens are outfitted with built in recycling storage. **#3.** On site composting.

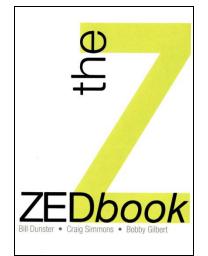


The target was to reduce landfill waste by 66%.

BedZED: Integrated Design Process

KEY WORKING CONCEPT:

Such a complex design with delicately interlayered, synergistic systemic requirements mandates use of the *Integrated* **Design Process** from the early concept stages of development.

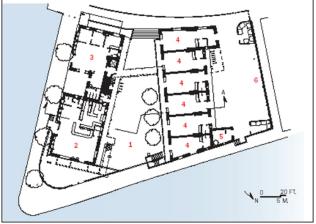


Zero emission design requires strict adherence to a philosophy of conservation and cooperation. mage credit: ARUP and Dunster

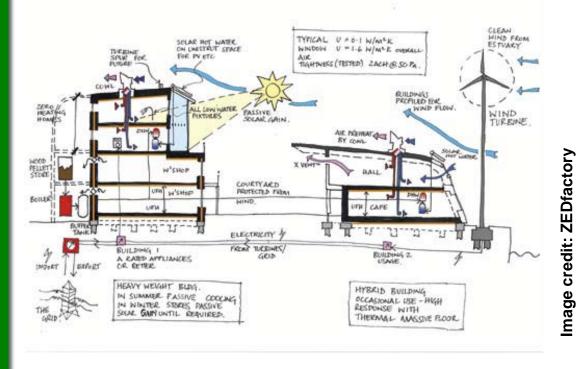
The ZEDfactory Philosophy...

Post BEDZed, ZEDfactory has set a list of priorities that are now incorporated into most designs:

- ✓ First consider the site, climate, solar angles
- ✓ Use brownfields
- ✓ Maximize density, while keeping green amenity space
- ✓ Keep a loose fit to allow for change, adaptation over time
- Design out the need to travel
- Minimize thermal and electrical requirements as it is easier to save electricity than to generate it
- ✓ Make an energy efficient envelope
- ✓ Use efficient appliances
- ✓ Use passive solar energy for heat and sun for daylighting
- ✓ Use natural ventilation
- ✓ Use wind cowls to assist natural ventilation
- Generate maximum renewable energy from within the site boundaries
- ✓ Incorporate wind turbines and PV
- ✓ Allow for upgrade paths if not all systems can be installed
- ✓ Use reclaimed or local materials



Jubilee Wharf: ZEDfactory


Architect: ZEDfactory
Location: Jubliee Wharf, Penryn, Cornwall
Client: Robotmother Ltd
Description: Mixed use with residential,
workshops and nursery
Start / Completion: October 2004 - September 2006
Climate: temperate, coastal

GROUND FLOOR PLAN

1 Courtyard 2 Cafe 3 Community hall 4 Workshop 5 Boiler room 6 Parking

Jubilee Wharf: Integrated Design Process

The project begins with an integrated design approach that takes all of the key ZED concepts into account – from the beginning, starting with the sun, wind and climate.

The IDP diagram provides the basis for decisions throughout the project. It reveals how the building has been zoned by use – intensive residential use on the left, and occasional use on the right. This makes better use of the systems and site.

Jubilee Wharf: Key Strategies List | Site and Community

Brownfield Site –

The site was previously occupied by a coalyard. **Community creation & revitalization** - a hub for craft makers, quality childcare onsite, health & fitness classes, café for socializing.

Pedestrian and public transit oriented - good public transport links, located in central Penryn for easy pedestrian access.

Jubilee Wharf: Key Strategies List | Envelope

Super Insulation –

300mm insulation reduces energy consumption to less than half a conventional building. This level of efficiency is necessary to reduce consumption and make fossil fuel avoidance possible.

Thermal Mass –

The interior surfaces are made from concrete block, concrete and plaster so that heat is stored efficiently.

Air Tightness –

The interior surfaces are parged with plaster, making sure to seal all cracks between joining materials.

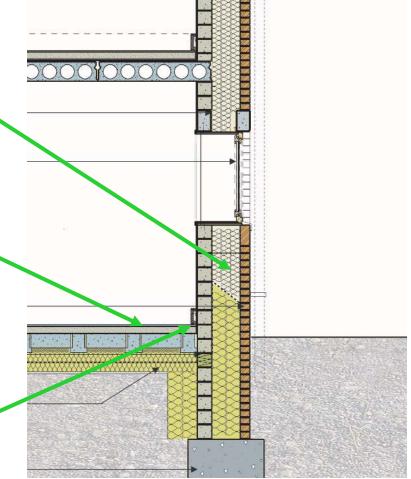


Image credit: ZEDfactory

Jubilee Wharf: Key Strategies List | Reclaimed Materials

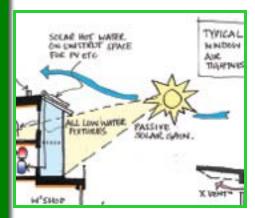
Using local & reclaimed materials - old floorboards, granite, Cornish cedar cladding and larch soffits, and some unused windows from BedZed

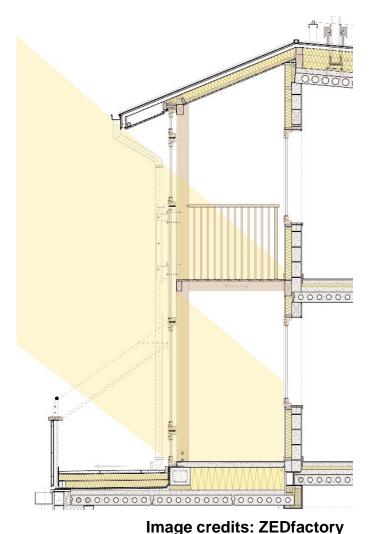
For example: The ceiling of the Yoga space is made of reclaimed floorboards from a Victorian house. The boards have not been changed but simply treated and cut to length.

Image credit: ZEDfactory

Jubilee Wharf: Key Strategies List | Healthy Materials

Healthy materials - low VOC paints, low formaldehyde floor coverings, natural fibers & surfaces, PVC only where unavoidable – with emphasis on creating a healthy environment.




Passive solar heating -

The sun space faces south and is used as a buffer space. In cold months the thermal mass heats up. In hot months the space can be closed off to keep the interior cool. It also shades the interior space.

Daylighting –

Window placement makes use of natural light.

Natural ventilation -

Wind cowls ventilate without the need for electric fans.

Being passive it uses no electricity.

This displacement ventilation provides fresh air at low level and extracts air at the high level when the temperature of the air in the room has risen.

The cowl turns to face the wind drawing fresh air in via a heat exchanger which warms the incoming air with the outgoing air.

The heat exchanger is 70 - 80% efficient and minimizes heat loss from the building while providing a constant supply of fresh air.

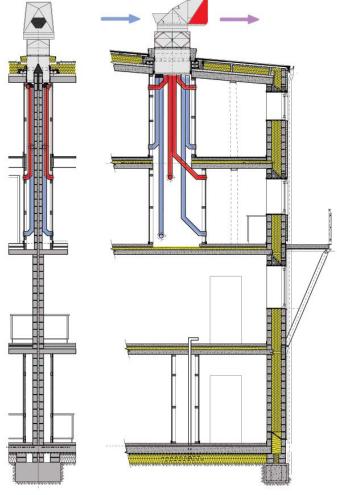


Image credit: ZEDfactory

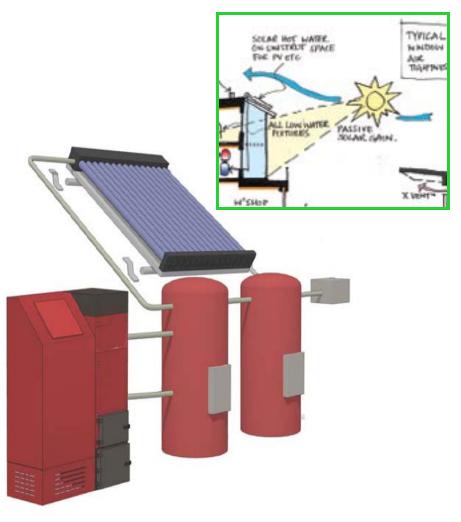
Solar panels -

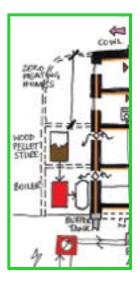
The project uses evacuated tubes for water heating – one panel per residence.

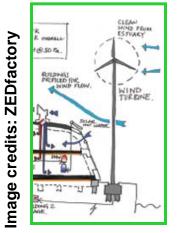
Photovoltaics –

Photovoltaic cells were not included in the original budget but provisions have been made for them to be fitted later.

Reduced water consumption – Low flush toilets, aerated taps, grade "A" consumption appliances.




Image credits: ZEDfactory

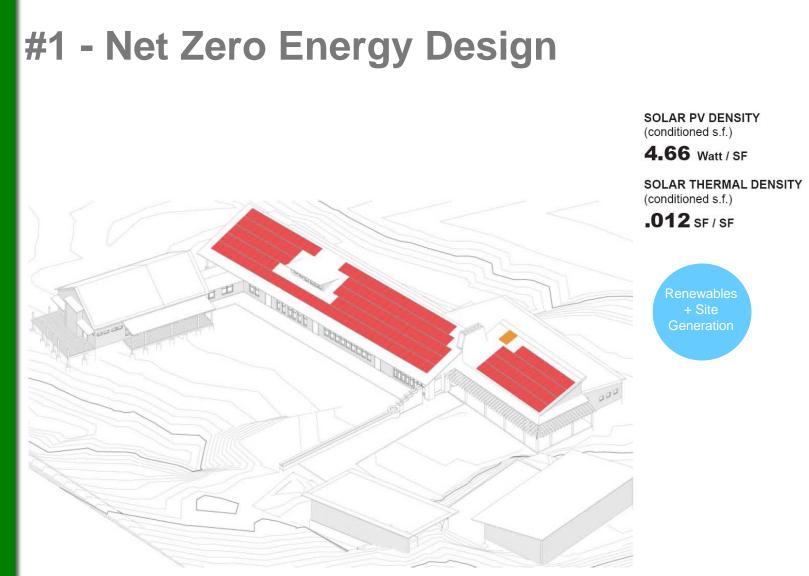

Biomass heating –

Under floor heating and hot water from a 75kW wood pellet boiler. **Onsite micro generation** –

4 x 6kW Proven wind turbines provide most of the electricity – giving back to the grid or drawing from as required.

Carbon Neutral – Operating Energy

Aldo Leopold Legacy Center Baraboo, Wisconsin



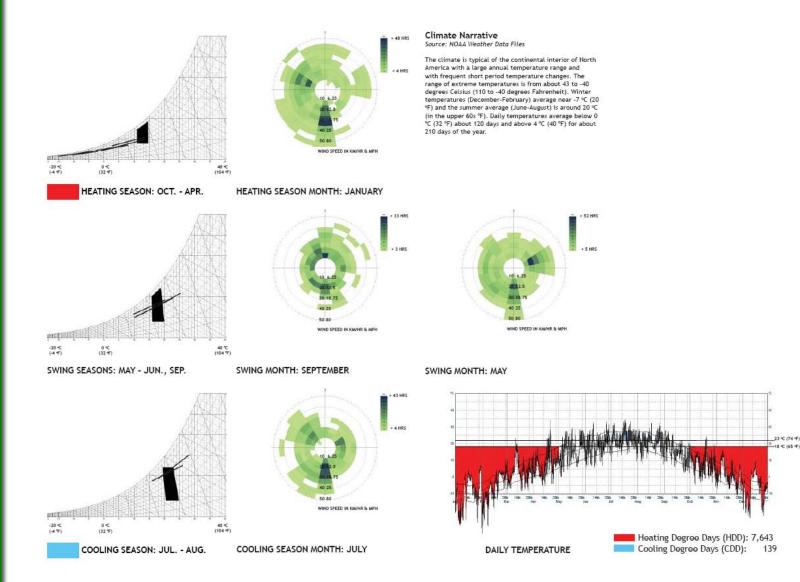
The Kubala Washatko Architects LEED[™] Platinum 2007

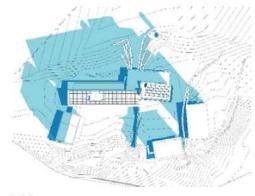
Technical information from Prof. Michael Utzinger, University of Wisconsin-Milwaukee

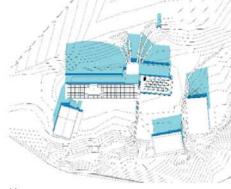
Leopold Approach to Carbon Neutral Design

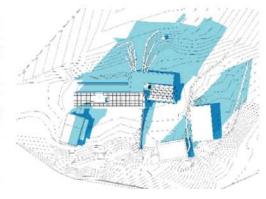
- Design a Net Zero (Operating Energy)
 Building
- Apply Carbon Balance to Building Operation (Ignore Carbon Emissions due to Construction)
- Include Carbon Sequestration in Forests
 Managed by Aldo Leopold Foundation
- Design to LEED[™] Platinum (as well)
- with 2 unique starting points...

A \$US250,000 PV array was included at the outset of the project budget and the building was designed to operate within the amount of electricity that this would generate.


#2 - Site Harvested Lumber:

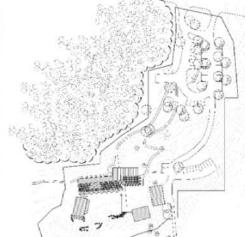

The building was designed around the size and quantity of lumber that could be sustainably harvested from the Leopold Forest.


Embodied Carbon in Building Materials


Climate Analysis

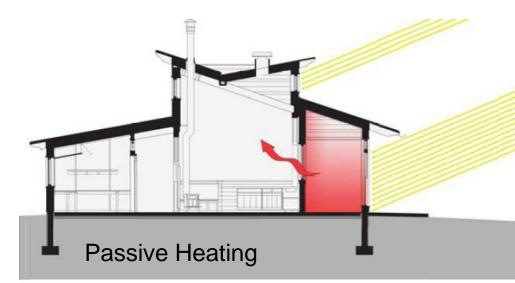
Site Analysis

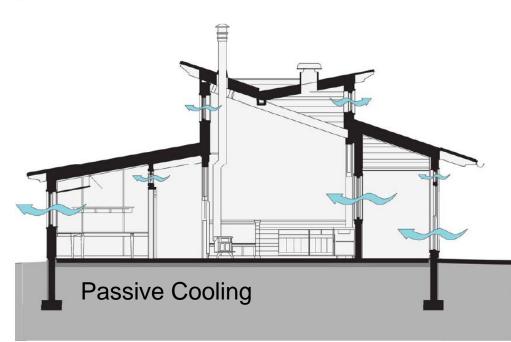
9:00 am

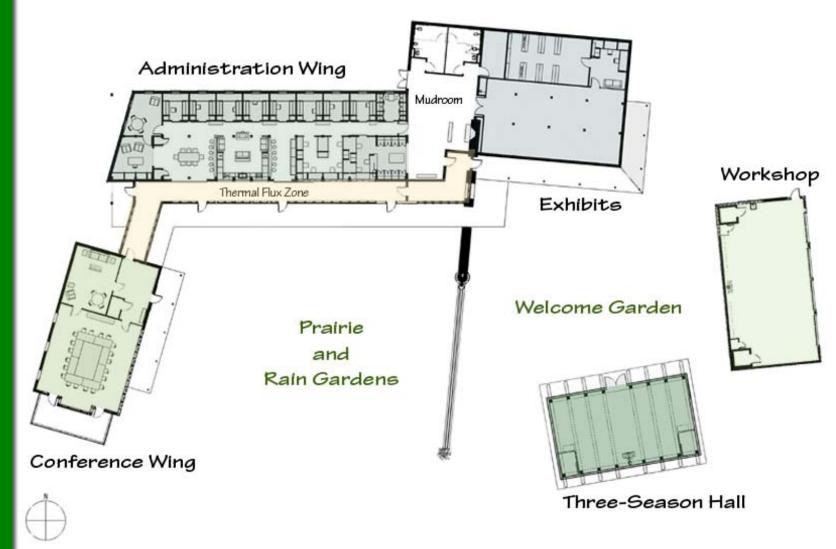


Site Shading Study

Ariel Image from South




June 21 December 21

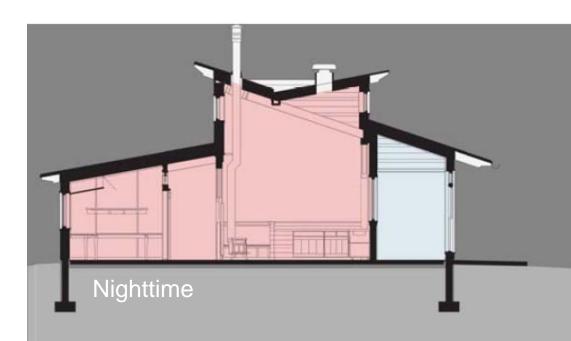

Architectural Design Strategies

- Start with bioclimatic design
- Program Thermal Zones
- All perimeter zones (no interior zones skin load dominated building)
- Daylight all occupied zones
- Natural ventilation in all occupied zones
- Double code insulation levels
- Passive solar heating
- Shade windows during summer

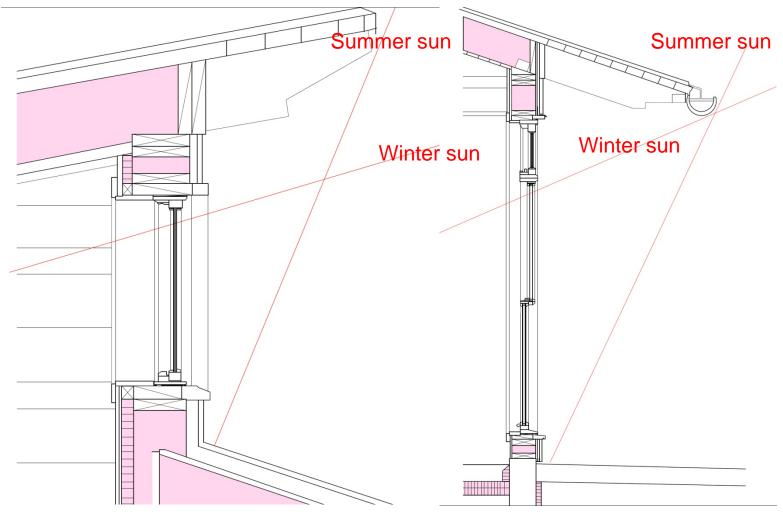
Thermal Zones ~ Perimeter Zones



Keep the buildings thin to allow for maximum daylight and use of solar for passive heating.


Passive Solar Heating

The concrete floor in the hall is used with direct gain to store heat
Large doors are opened to

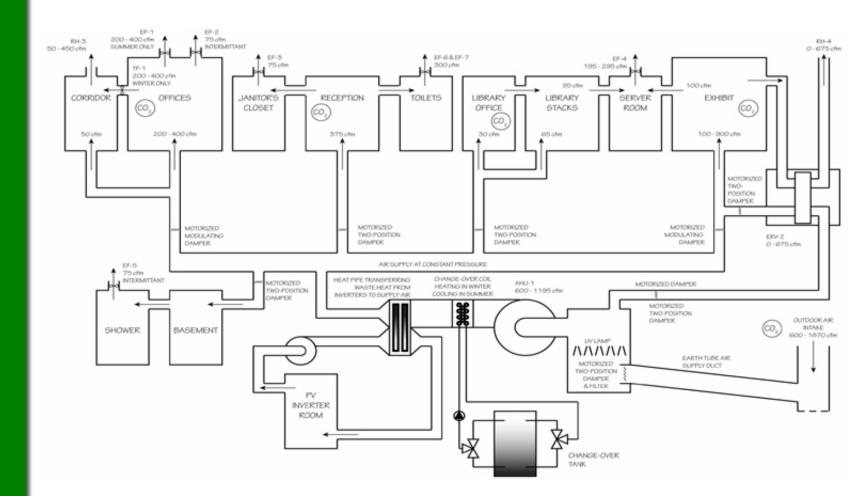

 Large doors are opened to allow transfer to occupied spaces

Daytime

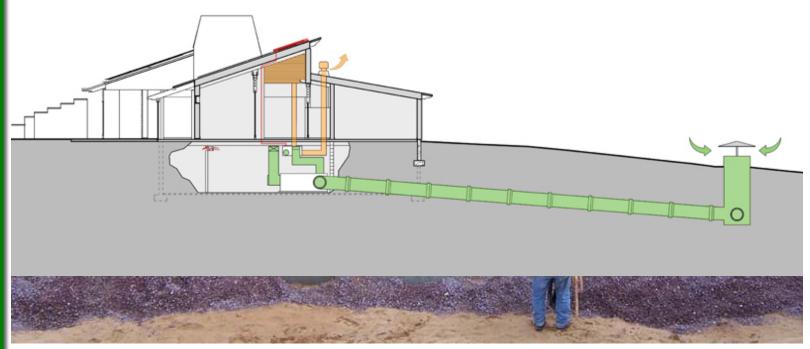
Passive Cooling: Shade Windows During Summer

Basic first tier principle of HEAT AVOIDANCE.

Natural Ventilation


- Natural ventilation strategy based on NO A/C provision for the building
- Operable windows
- Flow through strategy
- Insect screens to keep out pests

HVAC Strategies

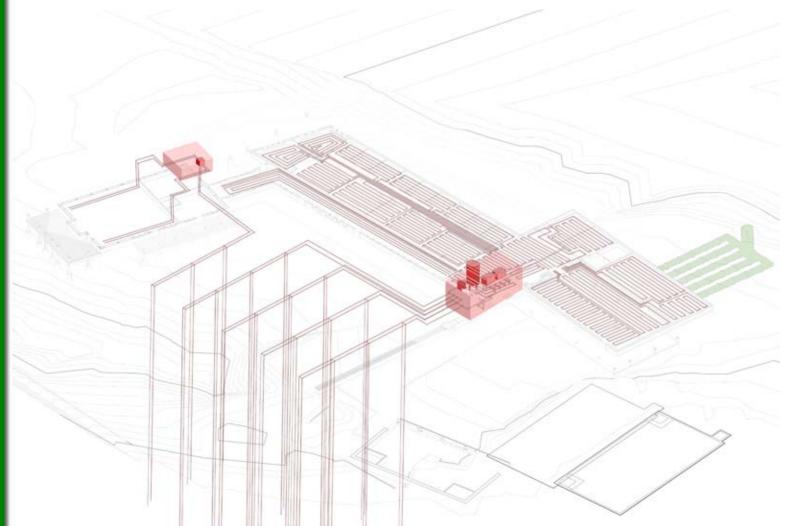

- Ventilate only to Occupant outdoor air requirements (2/3 ACH)
- 100% Outdoor air (no recirculation)
- Earth tube air pretreatment
- Demand Control Ventilation (600 to 2,500 cfm)
- Separate ventilation from heating and cooling
- Radiant floor slabs for heating and cooling
- Use ground as heat source & sink (ground source heat pumps)
- Storage tank as thermal capacitor between heat pumps & load
- Seasonal change-over system
- Solar heated service hot water

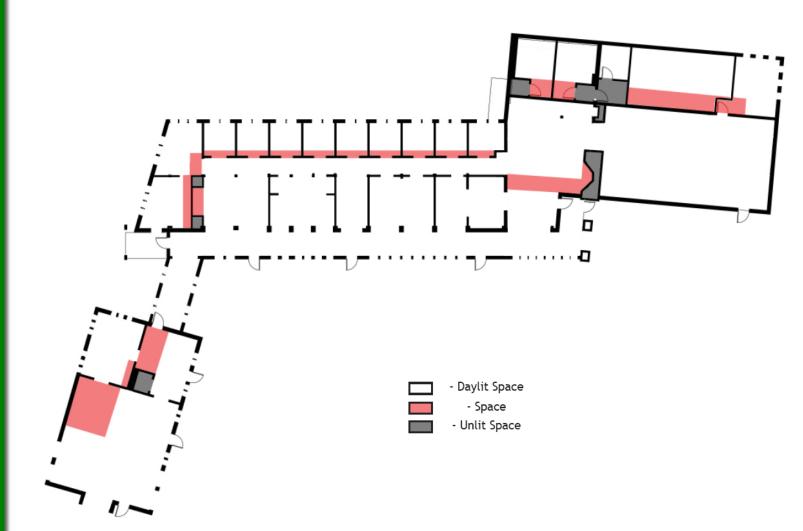
Ventilation System

Earth Duct for Air Pretreatment

Installation of large earth ducts to preheat and precool the air.

Radiant Heating and Cooling




Diagram showing radiant heating system.

Ground Source Heat Pumps

Super insulate hot water runs to minimize heat losses.

Daylight All Occupied Zones

Electric lights are only ON when there is insufficient daylight.

Three Season Hall

A large room designed NOT to be used in the winter when the weather is too severe to allow heating by a combination of passive + fireplace

Forest Management & Sustainable Harvest

Before Harvest

After Harvest

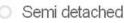
Calculating Carbon

How much Carbon – numeric validation?

Zero Carbon requires designers to numerically validate the effectiveness of their approaches.

- Carbon Footprint calculators are available online to look at your *personal carbon emissions*
- **Carbon Estimators** are available online to begin to assess the *impact of buildings*
- **Carbon Calculators** are available for purchase that will work with BIM systems and provide a fairly *accurate feedback mechanism*
- Carbon can be calculated by other methods, more project specific

Personal Footprint Calculators:



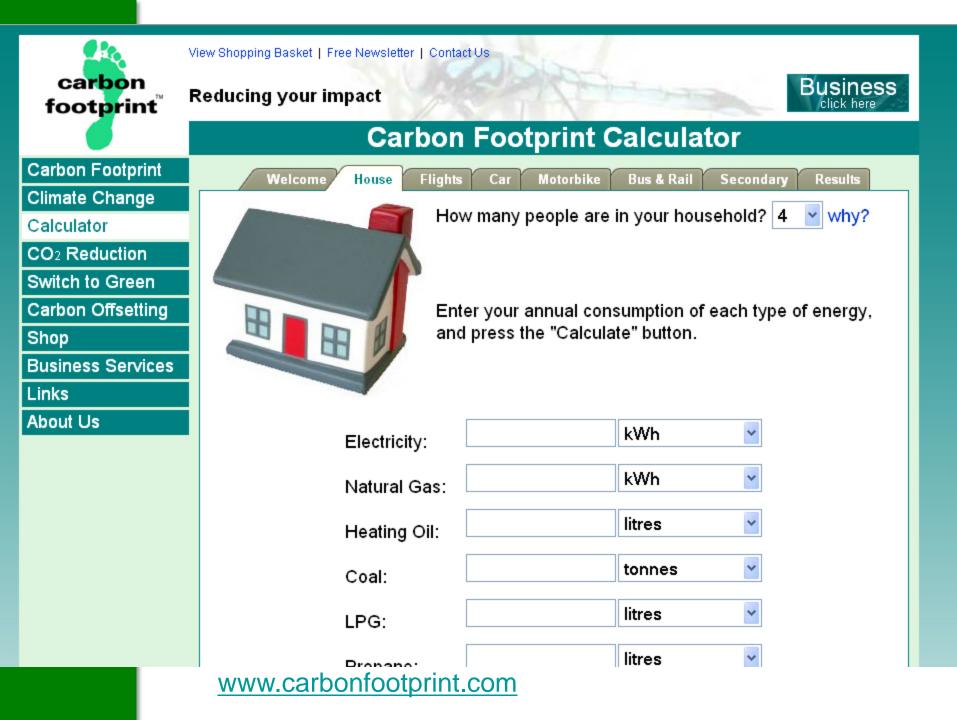
1 2 3 4 5 6 7

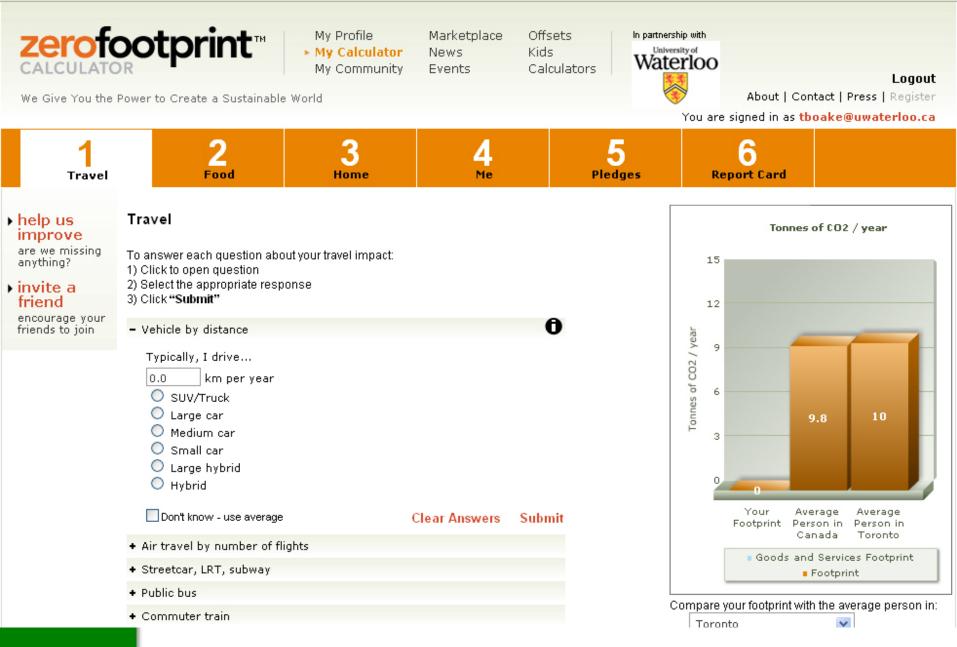
What kind of house do you live in?

Detached

Terrace

Flat


These provide an educational starting point to understand the impact of actions and preferences.


They are region/country specific.

http://footprint.wwf.org.uk/

We've also calculated your carbon footprint, which is 12.35 tonnes per annum

www.zerofootprint.net

First, we need a little information from you.

v

1. What country do you live in?

Canada

or on the map:

www.myfootprint.org

Estimating Carbon in Construction:

BuildCarbonNeutral: focuses on reducing *impact and* estimates EMBODIED carbon in BUILDINGS and SITE

buildcarbonneutral

Estimate the embodied CO₂ of a whole construction project.

The Construction Carbon Calculator helps developers, builders, architects and land planners approximate the net embodied carbon of a project's structures and site.

1:reduce 2:renew 3:offset

Constructing new buildings and sites with the least possible environmental impact involves three important steps: reduce, renew and offset. Offsetting means calculating the project's carbon footprint so it can be balanced by funding resources or activities like renewable energy and land protection – resources that benefit and protect the planet.

This tool estimates the embodied energy and subsequent carbon amounts released during construction. The measurements account for building materials, processes and carbon released due to ecosystem degradation or sequestered through landscape installation or restoration.

Learn more about this calculator: why it exists, how it works and why you should use it!

www.buildcarbonneutral.org

Construction Carbon Calculator
Building Size
Total Square Feet:
Stories Above Ground:
Stories Below Ground:
Primary Structural System Above Ground
O Wood
O Concrete
O Steel
 Mixed
Site
Ecoregion: Northwestern forested mountains 💌 (view map)
Previously Developed 💌 Vegetation:
Predominant Installed Shrubland
Landscape (SF) Disturbed:
Landscape (SF) Installed:
I have read and agree to the terms of use.
Calculate

A simple input screen that is intended to quickly give you a rough idea of the carbon associated with a building and its interaction/ impact on the site in terms of eco region and disturbance.

Construction Carbon Calculator

Building Size Total Square Feet:	
Stories Above	
Ground:	
Stories Below Ground:	
Primary Structural S	ystem Above Ground
	O Concrete
	Steel
	Mixed
	● Mixed
Site	
Ecoregion: (view map)	Northwestern forested mountains 💌
Predominant Existing Vegetation:	Previously Developed 💌
Predominant Installed Vegetation:	Shrubland 💌
Landscape (SF) Disturbed:	
Landscape (SF) Installed:	
I have read and agree to the terms of use.	
	Calculate
Calculator version 0.03.5. Last update	ed 2007.10.11.

buildcarbonneutral beta

- estimates the **embodied carbon** and subsequent carbon amounts **released during construction**.
- the measurements account for building materials, processes and carbon released due to ecosystem degradation or sequestered through landscape installation or restoration.

- the Calculator's estimation demonstrates the role of the immediate landscape in the site carbon footprint and how it should be considered in the whole site design.

buildcarbonneutral

PREMISE:

The Construction Carbon Calculator estimates embodied carbon. Embodied carbon is the carbon released when a product is manufactured, shipped to a project site and installed. This calculator looks at an entire project, and takes into account the site disturbance, landscape and ecosystem installation or restoration, building size and base materials of construction. It does this simply, requiring only basic information that is available to a project team very early in the design process.

The calculator provides an **estimate** that establishes a base number to clarify the carbon implications of the construction process - to be used as tool to address the reduction of that footprint. The results you obtain will be an estimation and approximate - accurate within 25%, plus or minus.

buildcarbonneutral beta

Construction Carbon Calculator Results

Approximate net embodied CO2 for this project is **94 metric tons.**

Your Entries

Total Square Feet	3,000
Stories Above Grade	2
Stories Below Grade	1
System Type	mixed
Ecoregion	Eastern Temperate Forests
Existing Vegetation Type	Previously Developed
Installed Vegetation Type	Short Grass or Lawn
Landscape Disturbed (SF)	1,000
Landscape Installed (SF)	200

Sample: 3,000 sf house

Construction Carbon Calculator formula version 0.03.5, last updated 2007.10.11. These results are an approximation. Your actual carbon footprint may vary. See assumptions for more information.

buildcarbonneutral beta

Construction Carbon Calculator Results

Approximate net embodied CO2 for this project is **241 metric tons.**

Your Entries

Total Square Feet	10,000
Stories Above Grade	2
Stories Below Grade	0
System Type	wood
Ecoregion	Great Plains
Existing Vegetation Type	Savanna or Parkland
Installed Vegetation Type	Short Grass or Lawn
Landscape Disturbed (SF)	5,000
Landscape Installed (SF)	1,000

Sample 10,000 sf Office

Construction Carbon Calculator formula version 0.03.5, last updated 2007.10.11. These results are an approximation. Your actual carbon footprint may vary. See assumptions for more information.

Calculating Carbon in Operating Energy:

Green Building Studio: works with BIM (now owned by Autodesk so requires a fee)

GREI BUILDING S	EN	
about	tutorial	downloads support
User: Ouroboros Logout	Your Projects User Settings Company	<u>y Account</u>
	Energy & Carbon Results US EPA ENERGY STAR Water Usage PV An	alysis LEED Daylight Weather 3D VRML View
File Downloads • <u>gbXML File</u> • <u>DOE-2 File</u> • <u>EnergyPlus File</u> • <u>Weather File(binary)</u> • <u>Weather File(CSV)</u>	General Information Project Title: Live Work Culver City Run Title: FTD-BLDG-51.xml Building Type: Office Floor Area: 7,649 ft ²	Location Information Building: CULVER CITY, CA 90232 Electric Cost: \$0.131/kWh Fuel Cost: \$1.000/Therm Weather: Losangeles, CA (TMY2)
Links • <u>Run List</u> • <u>Design Alternatives</u> • <u>Notes</u>	Estimated Energy & Cost SummaryAnnual Energy Cost\$20,090Lifecycle* Cost\$273,630Annual CO2 Emissions	Carbon Neutral Potential ¹ (CO ₂ Emissions) Base Run: 70.8 tons Onsite Renewable Potential: -17.7 tons Natural Ventilation Potential: -12.5 tons
Product Advisor	Electric [†] 65.8 tons Onsite Fuel 5.0 tons H3 Hummer Equivalent 6.4 Hummers Annual Energy	Onsite Fuel Offset/Biofuel Use: -5.0 tons Net CO ₂ Emissions: 35.7 tons 1. Carbon neutrality is defined here as; reducing grid electric use from the bas
Division	Electric 146,767 kWh Fuel 864 Therms Annual Peak Electric 59.4 kW	run by a percentage equal to the portion from fossil fueled power plants, defined below, and on site fossil fuel use is offset or eliminated. Electric Power Plant Sources ²
	Demand 59.4 KVV Lifecycle* Energy Electric 4,403,001 kWh	Fossil: 61% Nuclear: 14% Hydroelectric: 15%
	Fuel 25,917 Therms * 30 -vear life and 6.1 % discount rate for costs. + Does not include electric	Renewable: 10% Other: 0%

www.greenbuildingstudio.com

Energy and Carbon Results Output

User: Ouroboros Logout Your Projects User Settings Company Account File Downloads Energy & Carbon Results US EPA ENERGY STAR Water Usage PV Analysis LEED Daylight Weather 3D VRML View File Downloads gbXML File Project Title: Live Work Culver City Building: CULVER CITY, CA 90232 EnergyPlus File Project Title: FTD-BLDG-51.xml Building Type: Office Building: CULVER CITY, CA 90232 Elserine Cost: S1.000/Therm Building: CULVER CITY, CA 90232 Electric Cost: \$0.131/kWh Building Type: Office Floor Area: 7,649 ft ² Electric Cost: \$0.131/kWh Links Floor Area: \$20,090 Electric Cost: \$0.100/Therm Notes Manual Energy Cost \$20,090 S20,090 Lifecycle* Cost \$273,630 Annual Cog Emissions Onsite Renewable Potential: 17.7 tons Notes Electric1 65.8 tons Onsite Fuel Offset/Biofuel Use: 5.0 tons H3 Hummer Equivalent 6.4 Hummers 3.6 atons Onsite Fuel Offset/Biofuel Use: 3.7 tons Net CO2 Emissions: 3.5.7 tons 1. Carbon neutrality is defined here ast, reducing grid electric use		EN	
Energy & Carbon Results USE PA ENERGY STAR Water Usage PV Analysis LEED Daylight Weather 30 VRML View File Downloads gbXML File General Information Project Title: Live Work Culver City Building: CULVER CITY, CA 90232 Energy Plus File Weather File(binary) Weather File(binary) Weather File(cSV) Location Information Veather File(CSV) Weather File(binary) Weather File(CSV) Estimated Energy & Cost Summary Building: CULVER CITY, CA 90232 Links Estimated Energy & Cost Summary Building: CULVER CITY, CA 90232 Electric Cost: \$0.131/kWh Product Advisor Estimated Energy & Cost Summary Building: CULVER CITY, CA 90232 Electric 16.5.8 tons Product Advisor Estimated Energy & Cost Summary Munual Energy Cost \$220,090 S20,090 Electric 16.5.8 tons Onsite Fuel 5.0 tons Base Run: 70.8 tons Onsite Fuel 5.0 tons Natural Ventilation Potential: -17.7 tons Multi Energy Electric 146,767 kWh Fuel 864 Therms -1. Carbon neutrality is defined here as, reducing grid electric usin by a percentage equal to the portion from fosti fuel do power of end minated. Product S by CSI Demand Lifecycle* Energy	about	tutorial	downloads support
File Downloads General Information Location Information DQE_2_File Project Title: Live Work Culver City Building: CULVER CITY, CA 90232 EnergyPlus File Project Title: Live Work Culver City Building: CULVER CITY, CA 90232 Weather File(binary) Weather File(Dinary) Building Type: Office Building: CULVER CITY, CA 90232 Links Electric Cost: \$0.131/kWh Fuel Cost: \$1.00/Therm Weather File(CSV) Building Type: Office Fuel Cost: \$1.00/Therm Links Estimated Energy & Cost Summary Annual Energy Cost \$20,090 Lifecycle* Cost \$273,630 Onsite Fuel 5.0 tons Onsite Fuel 5.0 tons Motes Electric † 65.8 tons Onsite Fuel 5.0 tons Natural Ventilation Potential: -12.5 tons Product Advisor Electric 146,767 kWh Fuel 864 Therms 1. Cerbon neutrally is defined here as: reducing grid electric us in offeet or eliminated. Product Sty CSI Division Electric 59.4 kW Electric Power Plant Sources ² Product Advisor Fuel Rost 59.4 kW Fuel Rost Electric Power Plant Sources ²	User: Ouroboros Logou	nt <u>Your Projects</u> <u>User Settings</u> <u>Compa</u>	any Account 🗧
Operation General Information Location Information DoEs2File Project Title: Live Work Culver City Building: CULVER CITY, CA 90232 EnergyPlus File Run Title: FTD-BLDG-51.xml Building: CULVER CITY, CA 90232 Weather File(Dinary) Building Type: Office Fuel Cost: \$1.000/Therm Weather File(CSV) Building Type: Office Fuel Cost: \$1.000/Therm Inks Estimated Energy & Cost Summary Fuel Cost: \$1.000/Therm Nutes Annual Energy Cost \$20,090 Lifecycle* Cost \$2273,630 Annual Co2 Emissions Carbon Neutral Potential ¹ (CO2 Emissions) Base Run: 70.8 tons Onsite Fuel 5.0 tons Manual Energy S.0 tons Manual Energy <th></th> <th>Energy & Carbon Results US EPA ENERGY STAR Water Usage PV</th> <th>Analysis LEED Daylight Weather 3D VRML View</th>		Energy & Carbon Results US EPA ENERGY STAR Water Usage PV	Analysis LEED Daylight Weather 3D VRML View
Run List Estimated Energy & Cost summary Annual Energy Cost \$20,090 Lifecycle* Cost \$273,630 Annual CO2 Emissions Annual CO2 Emissions Product Advisor Electric [†] 65.8 tons Onsite Fuel 5.0 tons Minual Energy Second Cost Vision Electric t 46.767 kWh Fuel 864 Therms Annual Peak Electric 59.4 kW Lifecycle* Energy 59.4 kW Lifecycle* Energy Nuclear:	<u>gbXML File</u> <u>DOE-2 File</u> <u>EnergyPlus File</u> <u>Weather File(binary)</u>	Project Title: Live Work Culver City Run Title: FTD-BLDG-51.xml Building Type: Office	Building: CULVER CITY, CA 90232 Electric Cost: \$0.131/kWh Fuel Cost: \$1.000/Therm
Product Advisor Onsite Fuel 5.0 tons Products by CSI Division Net CO2 Emissions: 35.7 tons Division Electric 146,767 kWh 1. Carbon neutrality is defined here as; reducing grid electric use run by a percentage equal to the portion from fossil fuel use is offset or eliminated. Annual Peak Electric 59.4 kW Electric 61% Lifecycle* Energy Nuclear: 14%	 <u>Run List</u> <u>Design Alternatives</u> 	Annual Energy Cost \$20,090 Lifecycle* Cost \$273,630	Base Run: 70.8 tons Onsite Renewable Potential: -17.7 tons
Annual Peak Electric 59.4 kW Fossil: 61% Lifecycle* Energy Nuclear: 14%	Products by CSI Division Annual Energy Annual Peak El Demand	Onsite Fuel 5.0 tons H3 Hummer Equivalent 6.4 Hummers Annual Energy Electric 146,767 kWh	Net CO ₂ Emissions: 35.7 tons 1. Carbon neutrality is defined here as; reducing grid electric use from the bas run by a percentage equal to the portion from fossil fueled power plants,
Electric 4,403,001 kWh Hydroelectric: 15%		Annual Peak Electric 59.4 kW	Fossil: 61%
Fuel 25,917 Therms Renewable: 10%		Fuel 25,917 Therms	Renewable: 10%

Zero tons or less indicates a building that CAN achieve Carbon Neutrality.

Energy & Carbon Results US EPA ENERGY STAR Water Usage PV Analysis LEED Daylight Weather 3D VRML View

General Information

Project Title: Live Work Culver City Run Title: E & L & HVAC Measures Building Type: Office Floor Area: 7,649 ft²

Estimated Energy & Cost Summary

Annual Energy Cost \$16,124 Lifecycle* Cost \$219,616 Annual CO₂ Emissions

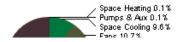
Electric [†]	52.2 tons
Onsite Fuel	5.1 tons
H3 Hummer Equivalent	5.2 Hummers

Annual Energy

Electric 116,413 kWh Fuel 874 Therm

Annual Peak Electric Demand Lifecycle* Energy uel 874 Therms 48.6 kW

Electric 3,492,390 kWh Fuel 26.232 Therms

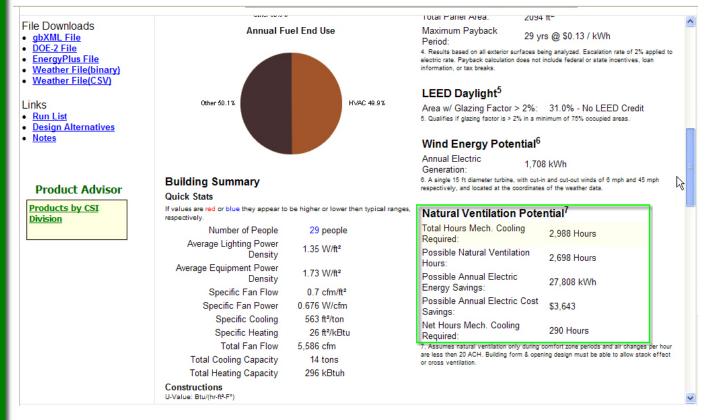

Fuel 20,252 memos

* 30 -year life and 6.1 % discount rate for costs. † Does not include electric transmission losses.

Energy End-Use Charts

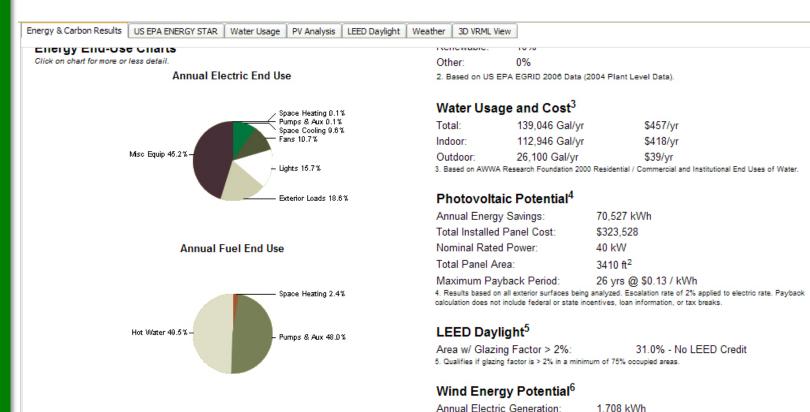
Click on chart for more or less detail.

Annual Electric End Use



3D VRML View Location Information Building: CULVER CITY, CA 90232 Electric Cost: \$0.131/kWh Fuel Cost: \$1 000/Therm Weather: Losangeles, CA (TMY2) Carbon Neutral Potential¹ (CO, Emissions) Base Run: 70.8 tons This Run: 57.3 tons Building Electric Reduction: -13.6 tons Onsite Renewable Potential: -32.4 tons Natural Ventilation Potential: -7.2 tons Onsite Fuel Offset/Biofuel Use: 5 1 tons Net CO, Emissions: -1.0 tons 1. Carbon neutrality is defined here as; reducing grid electric use from the base run by a percentage equa to the portion from fossil fueled power plants, defined below, and op site fossil fuel use is offset or eliminated. Electric Power Plant Sources² 61% Fossil: Nuclear: 14% Hvdroelectric: 15% Renewable: 10% Other: 0% 2. Based on US EPA EGRID 2006 Data (2004 Plant Level Data). Water Usage and Cost³ Total: 139.046 Gal/yr \$457/vr 110.040.0-16-C 440 /....

Green Building Studio:


Runs a DOE model of the existing building to provide the basis for reworking the design to reduce carbon via daylighting, PV, natural ventilation, envelope/window redesign, electricity, water – all based

on climate and location statistics

Source: www.greenbuildingstudio.com (purchased by Autodesk so now requires login and payment)

Output suggests areas of improvement/potential

Building Summary

Quick Stats

If values are red or blue they appear to be higher or lower then typical ranges, respectively.

Number of People	29 people
Average Lighting Power Density	0.81 W/ft ²
Average Equipment Power Density	1.73 W/ft ²
Specific Fan Flow	0.6 cfm/ft ²

Natural Ventilation Potential⁷

coordinates of the weather data.

Total Hours Mech. Cooling Required:	2,628 Hours
Possible Natural Ventilation Hours:	2,338 Hours
Possible Annual Electric Energy Savings:	16,041 kWh
Possible Annual Electric Cost Savings:	\$2.101

6. A single 15 ft diameter turbine, with cut-in and cut-out winds of 6 mph and 45 mph respectively, and located at the

Ability to run Design Alternatives and compare results.

Project: Live Work Culver City		Run List	ist Base Run: FTD-BLDG-5		1.xml, Energy Cost: <u>\$20,090</u>			
General Lighting			Roof	Northern Walls		S	outher	
Rotation 0 HVAC No Change	Lighting Efficiency No change Lighting Control No change		Construction No Change		Construction No Change Glazing Type No Change Glass Amoun No change		Construc No Chan Glazing T No Chan Glass An No chan	ge Fype ge nount
1. Select Changes	Below. 2. Ent	er Alternative	e Name:			3. Add Alter	native	C
	Reset Dropdown \$	Selections Belo	w		Save Added &	Unrun Alternative	es 📄	C
General Lighting			Ro	of	No	rthern Walls	5	Southern \
Alternatives Annual Energy	Cost 0 VAC	hange			▼	lelete		

Athena Institute EcoCalculator:

FREE EcoCalculator

addresses a wider range of variables and is FREE.

Welcome Terri Boake • Your Account • Sign off

	Download the EcoCalculator				
Institute	ECOCULATOR OVERVIEW DOWNLOAD USERS GUIDE DEFINITIONS & ASSUMPTIONS ADVISORY COUNCIL				
Location: Home > EcoCalculator >	Download the Eco	Calculator			
Home	Download	the EcoCalcula	tor Sec	HENA" oCalculator assemblies	
About the Institute Impact Estimator EcoCalculator	The ATHENA® EcoCalculator for Assemblies provides instant LCA results for common building assemblies based on detailed assessments previously conducted using the ATHENA® Impact Estimator.				
Databases + Projects +	Please note that the the current version of the <i>EcoCalculator</i> is <i>v2.3</i> , Certain assemblies highlighted in red are still being worked on, and others may be changed somewhat in the near future in terms of their specific definitions. As data for other assemblies becomes available, they will be added to the <i>EcoCalculator</i> .				
Reports & Publications + Our Supporters +	appropriate clin		<i>ulator</i> , you will first need to pick the ant version for the height of your bui ly definitions		
Site Info Careers		Geographic Region	Toronto Canada		
<u>What's New</u>		Building Height	High-Rise		
Your Dashboard Your Account	Download Although the <i>EcoCalculator</i> is presented in an easy-to-use Excel spreadsheet format, you may find it useful to review or download the User's Guide 电人 PDF. Detailed assembly definitions, assumptions and related information are provided in a separate				
Your Profile Sign Off EcoCalculator Download					
Newsletter :: coming soon	Definitions and	Definitions and Assumptions document that can also be downloaded in a pdf format. Please note that the <i>EcoCalculator</i> Excel files contain NO MACROS .			
Now downloading Version 2.3 of the	www.athenasmi.org/tools/eco0				

Geographic Region Building Height Although the EcoCalculator is presented i you may find it useful to review or downloa assembly definitions, assumptions and re Definitions and Assumptions document th Please note that the EcoCalculator Excel	Pittsburgh USA Quebec City Canada Toronto Canada	dsheet format, Detailed I in a separate a pdf format.
---	--	--

As of July 2008, includes the above geographic locations and a choice of either high rise or low rise building.

Geographic Region	Quebec City Car	nada 🔽
Building Height	High-Rise	*
	Dov	wnload

Set up as a series of building type specific spreadsheets that provide feedback on these topics:

G

N

M

K.

This easy-to-use interface is designed to calculate the environmental impacts associated with the assemblies used in your building. The five environmental impact measures are:

Primary Energy

D

E

A

9 10

11 12

> 13 14

> 15 16 17

> 18

19 20

21 22

23 24

25

26

27 28 29

30

31

32 33

34 35

36 37

38

39 40

41 42

43

44 45 В

С

This is the amount of energy used in the extraction, processing, transportation, construction, and disposal of each material. Measured in megajoules (MJ).

Global Warming Potential

This is the amount of greenhouse gases created in the extraction, processing, transportation, construction, and disposal of each material. Measured in metric tonnes unless specified otherwise.

Weighted Resource Use

This is the amount of raw materials required for the extraction, processing, transportation, construction, and disposal of each material. Measured in metric tonnes unless specified otherwise.

Water Pollution

This is the impact on water quality created in the extraction, processing, transportation, construction, and disposal of each material. Measured as an index.

Air Pollution

This is the impact on air quality created in the extraction, processing, transportation, construction, and disposal of each material. Measured as an index.

	А	В	С	D	E	F	G	Н	1	J
								Weighted		
						Primary	GWP	Resource Use	Air Pollution	H2O Pollution
				TOTAL IM		Energy (MJ)	(tonnes)	(tonnes)	Index	Index
1		ATHENA®		BUILDING C		TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
2					INS & BEAMS	0	0		0	
3		EcoCal	culator		ATE FLOORS	0	0	-	0	
4				EXTERIOR WALLS		0	0	-	0	
5	for assemblies			WINDOWS		0	0	-	0	
6				INTE	RIOR WALLS	0	0	-	0	0.00
7				ROOF		0	0	-	0	
8				WHOL	E BUILDING	0	0	0	0	0.00
9	A. C	OLUMNS AND BEA	MS							
	ATU	ENA ACCEMPLY EV	ALLIATION TOOL		avanta	Louy Die	o Puild			
		ENA ASSEMBLY EV					se Dulla	ing		
11	IN THE	YELLOW CELLS BELOW, ENTER 1	<u>(HE AREA (in m²) THAT EACH A</u>	SSEMBLY IS	used in you	R BUILDING				
		ASSEMBLY TYPE				Primary		Weighted	Air Pollution	H2O Pollution
		Column	Beam		Percentage of	Energy	GWP	Resource Use	Index	Index
12				m ²	total	per m ² (MJ)	per m² (kg)	perm²(kg)	per m ²	per m ²
13	Averag	e:				488.29	21.00	131.21	3.02	0.06
14	1	Concrete	Concrete	0,	Į	1260.23	68.07	503.83	8.61	0.0491
15	2	Concrete	Wide-flange steel	0		1038.26	51.81	229.18	6.18	0.1729
16	3	Concrete	Glulam	0		311.96	16.61	143.90	2.96	0.0067
17	4	Concrete	Structural Composite Lumber	0		448.09	18.85	198.36	2.99	0.0245
18	5	Hollow Structural Steel	Wide-flange steel	0		798.99	36.62	103.98	4.21	0.1801
19	6	Hollow Structural Steel	Glulam	0		245.42	5.85	100.82	1.32	0.0178
20	7	Hollow Structural Steel	Structural Composite Lumber	0		141.86	5.85	51.99	1.56	0.0163
21	8	Glulam	Wide-flange steel	0		968.81	43.30	128.63	5.04	0.2037
22	9	Glulam	Glulam	0		124.15	4.10	52.51	1.46	0.0002
23	10	Glulam	Structural Composite Lumber	0		259.51	6.31	106.83	1.48	0.0178
24	11	Structural Composite Lumber	Wide-flange steel	0		980.43	43.25	134.27	5.00	0.2037
25	12	Structural Composite Lumber	Glulam	0		135.77	4.05	58.16	1.41	0.0002
26	13	Structural Composite Lumber	Structural Composite Lumber	0		271.13	6.26	112.48	1.44	0.0178
27	14	Wide-flange Steel	Wide-flange steel	0		1008.17	45.23	129.37	5.22	0.2155
28		Wide-flange Steel	Glulam	0		164.69	6.10	53.47	1.56	0.0120
29	16	Wide-flange Steel	Structural Composite Lumber	0		268.24	6.10	102.30	1.32	0.0135
30	17	Built-up Softwood	Glulam	0		114.12	3.75	48.66	1.32	0.0002
31	18	Built-up Softwood	Structural Composite Lumber	0		249.48	5.95	102.97	1.35	0.0178
32			TOTAL m ²	0.00						
34										
35										
35										

Tab along the bottom of the spreadsheet to manually input data for each building material or assembly.

	Α	В	С	D	E	F	G	Н		J
1			TOTAL IM BUILDING C	PACTS BY	Primary Energy (MJ) TOTAL	GWP (tonnes) TOTAL	Weighted Resource Use (tonnes) TOTAL	Air Pollution Index TOTAL	H2O Pollution Index TOTAL	
2	EcoCalculator			COLUMNS & BEAMS		0	0	_	0	0.00
3					ATE FLOORS	0	0	0	0	0.00
	for assemblies				EXTERIOR THEES			0	0	0.00
5								0	0	0.00
					INTERIOR WALLS			0	0	0.00
					ROOF	0	0	0	0	0.00
8				WHU	E BUILDING	0	0	0	0	0.00
9	C. E	XTERIOR WALLS								
				01) Tara		Diec	م منا مانید م		
		ENA ASSEMBLY EVALUAT						sullaing		
11	IN THE	YELLOW CELLS BELOW, ENTER THE AREA (ii	n m²) THAT E	ACH ASSEM	BLY IS USED	IN YOUR BUI	ILDING			
			the second second		12 - 12 - 12	Primary		Weighted	Air Pollution	H2O Pollution
			Assembly R-		Percentage of	Energy	GWP	Resource Use	Index	Index
12			value	m²	total	per m ² (MJ)	per m² (kg)	per m² (kg)	per m ²	per m ²
13	13 Average:					1421.11	88.76	319.71	18.36	7.43
14	8" CON	CRETE BLOCK								
	1	Concrete block, brick cladding								
15	1	rigid insulation, vapor barrier	21.80	0		2254.83	113.76	256.98	27.99	0.0198
	2	Concrete block, steel cladding,			ſ					
16		rigid insulation, vapor barrier	21.61	0		2519.28	208.41	190.63	37.45	47.3227
47	3	Concrete block, stucco cladding		_		1000 01				
17	4	rigid insulation, vapor barrier	21.11	0		1530.64	88.82	213.63	16.79	0.0310
18	4	Concrete Block, EIFS, vapor barrier Concrete Block, precast cladding, rigid	16.51	U		1227.71	72.38	136.73	14.51	0.0131
19	5	Insulation, vapor barrier	21.00	0		1464.18	93.18	301.72	16.58	0.0557
19		Concrete block, brick cladding	21.00	0		1404.18	95.18	301.72	10.38	0.0557
	6	rigid insulation, vapor barrier								
20	0	gypsum board, latex paint	22.36	0		2394.08	118.17	275.66	29.89	0.0198
20		Concrete block, steel cladding	22.00			200 1100	110.17	2,0.00	25.05	0.0150
	7	rigid insulation, vapor barrier								
21	-	gypsum board, latex paint	22.17	0		2658.52	212.82	209.30	39.35	47.3227
		Concrete block, stucco cladding								
	8	d insulation, vapor barrier								
22		gypsum board, latex paint	21.67	0		1669.89	93.23	232.30	18.69	0.0310
	9	Concrete block, EIFS, vapor barrier, gypsum								
23	3	board, latex paint	17.07	0		1366.95	76.79	155.41	16.41	0.0131
		Concrete block, precast cladding, rigid								
14 4	F H	WELCOME & HOW-TO / COLUMNS AND BEAN	4S ∕ INTERM	EDIATE FLOC		OR WALLS	WINDOWS /	INTERIOR W	ALLS / ROOF	s/
	INTERIOR & HOW-TO / COLUMNS AND BEAMS / INTERMEDIATE FLOORS \EXTERIOR WALLS / WINDOWS / INTERIOR WALLS / ROOFS /									

Provides a tally as you enter values

	A	В	С	D	E	F	G	Н		J
						Primary	GWP	Weighted Resource Use	Air Pollution	H2O Pollution
		EcoCalculator			TOTAL IMPACTS BY		(tonnes)	(tonnes)	Index	Index
1					OMPONENT	Energy (MJ) TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
2					4NS & BEAMS	245435	12		1517	28.91
3					IATE FLOORS	0	0		0	
4	for assemblies				RIOR WALLS	0	0	0	0	0.00
5					WINDOWS	0	0	0	0	0.00
6				INT	ERIOR WALLS	0	0	0	0	0.00
7					ROOF	0	0	-	0	0.00
8				WHO	LE BUILDING	245435	12	77	1517	28.91
9	B. I	NTERMEDIATE FLOORS								
10	ATH	ENA ASSEMBLY EVALUA	TION TOOL v2.3-	Ouebec	City Hi	ah-Rise	Buildin	a		
		YELLOW CELLS BELOW, ENTER THE AREA (-	.9		
			IT IT Y THAT EACH AGGENDET			Primary		Weighted	Air Pollution	H2O Pollution
		Floor Structure	Interior Ceiling Finish		Percentage of	Energy	GWP	Resource Use	Index	Index
12		*Assemblies in red forthcoming*		m ²	total	per m ² (MJ)	per m² (kg)	per m ² (kg)	per m ²	per m ²
13	Averag	e:				649.88	47.50	352.57	7.56	0.0790
20	7	WOOD JOIST AND OSB DECKING SYSTEM	gypsum board; latex paint	0		390.82	8.34	141.88	2.95	0.0007
	8	OPEN WEB STEEL JOIST W/ STEEL DECKING								
21	0		gypsum board; latex paint	0		883.77	57.30	337.96	8.60	0.1908
			2/FFF							
	9	OPEN WEB STEEL JOIST W/ STEEL DECKING								
22			none	0		743.06	53.18	320.55	6.79	0.1908
	10	STEEL STUD JOIST AND OSB FLOORING								
23	10		none	0		620.95	39.61	129.20	5.46	0.2693
	11	Structural steel w/ steel decking system and								
24		concrete topping		0						
25	12	Structural steel w/ steel decking system and		0						
25		CONCRETE TOPPING OPEN WEB STEEL JOIST W/ 3/4" OSB		U						
26	13		gypsum board; latex paint	0		554.99	21.35	106.35	3.72	0.0850
20		OPEN WEB STEEL JOIST W/ 3/4" OSB	gypsam board, latex paint				21.00	100.00		0.0000
27	14		none	0		414.28	17.23	88.94	1.91	0.0850
	4.5	Cold-formed flat steel truss w/ steel decking								
28	15	system and concrete topping		0						
	16	Cold-formed flat steel truss w/ steel decking								
29	10	system and concrete topping		0						
	17	Cold-formed steel joist w/ steel decking								
30	A NA	WELCOME & HOW-TO / COLUMNS AND BEA			LALLS ZIAME	DOWS / INTE		/ROOES /		
		WELCOME & HOW-TO X COLOMINS AND BEA	AINTERMEDIATE FLOORS	EXTERIOR V	WELD & WINE	JOWS V INTE	NION WALLS	(KOOPS /		
Read	Ready									

Notes in red assemblies not currently included but forthcoming. Always check back for a more recent version!! Do not reuse downloads!

Athena Institute and Morrison Hershfield: Impact Estimator w/ Life Cycle Analysis

 evaluates whole buildings and assemblies based on internationally recognized life cycle assessment (LCA) methodology.

 easily assess and compare the environmental implications of industrial, institutional, commercial and residential designs—both for new buildings and major renovations. the software also distinguishes between owner—occupied and rental facilities.

 puts the environment on equal footing with other more traditional design criteria at the conceptual stage of a project. incorporates ATHENA's own widely–acclaimed databases, which cover more than 90% of the structural and envelope systems typically used in residential and commercial buildings.

 simulates over 1,000 different assembly combinations and is capable of modeling 95% of the building stock in North America.

The *Estimator* takes into account the environmental impacts of:

- Material manufacturing, including resource extraction and recycled content
- Related transportation
- On-site construction
- Regional variation in energy use, transportation and other factors
- Building type and assumed lifespan
- Maintenance, repair and replacement effects
- Demolition and disposal
- Operating energy emissions and pre-combustion effects

Although the *Estimator* doesn't include an operating energy simulation capability, it does allow users to enter the results of a simulation in order to compute the fuel cycle burdens and factor them into the overall results.

Download a free trial version

Jul 05, 2008

HOMEPROFILE SECTORS & SERVICES CAREERS SEMINARS & PAPERS LINKS ATHENA OFFICES

Athena Impact Estimator

demo model registration

Welcome and thank you for your interest in the ATHENA⁰ Impact Estimator software.

We are pleased to offer you the opportunity to test-drive a limited function Demo version of our software. ATHENA® Impact Estimator v.3.0.2 is an environmental assessment tool that lets building designers compare the relative environmental effects or trade-offs among alternative design solutions at the conceptual design stage.

The ATHENA® Impact Estimator v.3.0.2 Demo software is being released for review, testing and experimental purposes only and is provided without any warranty, expressed or implied. The model's use should be limited to a conceptual design setting and should not be used to size components or assemblies for actual design purposes.

You can download our FREE Demo Model after completing the Registration Form below.

Required fields are indicated by an asterisk (*).

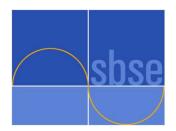
Name:*	Terri Boake	
Organization Name:*	University of Waterloo	
Country:	Canada	
E-mail:*	tboake@uwaterloo.ca	
Type of Organization:*	Education	[
	Submit	

athena index

- Overview
- 🗆 Athena Website Links
 - Database Overview
 - Structural Products
 - Envelope Products
- □ Software Overview
 - 🗆 Tutorial
 - 🗆 Free Demo
 - Companion LCI Database Reports CD
 - Price Structure
 - Order Form
- 🗆 EcoCalculator
- 🗆 MH/Athena Relationship

All contents copyright © 2007 Morrison Hershfield Group Inc.. All rights reserved. **Disclaimer** Please contact the **Netmaster** with any technical comments or questions about this site.

http://www.athenasmi.org/tools/impactEstimator/demo.html


¥

JULLESS

The Carbon Neutral Design Project Web Site

The Carbon Neutral Design Project

- Curriculum materials project
- Society of Building Science Educators <u>www.sbse.org</u>
- Funded by the American Institute of Architects
- Web site dedicated to
 - explaining carbon neutral design
 - examination of building case studies
 - exploration of carbon calculation tools/software
 - exposition of teaching materials at the University level

CND Project - BETA SITE - under development

AIA Home > SBSE Home > Teaching Resources > Carbon Neutral Design

Project Introduction

- What is Carbon Neutral Design?
- Carbon Neutral Design Process
- Carbon Neutral Design Strategies
- Carbon Calculation Protocols
- Carbon Calculation Tools
- Carbon Neutral Case Studies
- Carbon Neutral Teaching
- Resources
- Links

CURRICULUM MATERIALS PROJECT

The Society of Building Science Educators www.sbse.org

The Carbon Neutral Design Project:

The Aldo Leopold Legacy Center, Baribou, Wisconsin: the first Carbon Neutral Building in the United States, in addition to being awarded LEED® Platinum Members of the CND Project enjoy a site tour in November 2008

The Carbon Neutral Curriculum Materials Project is a joint research effort between members of the Society of Building Science Educators (www.sbse.org), the American Institute of Architects (www.aia.org), and a private donor, the purpose of which is to provide practitioners, faculty and students with the means to meet the 2030 Challenge (www.architecture2030.org)- that is, to be able to design and construct buildings to a state of carbon neutrality by the year 2030.

Please use the links at the left to find out more about designing buildings to a state of carbon neutrality.

IMPORTANT: THIS SITE IS A WORK IN PROGRESS - COMPLETION SCHEDULED FOR APRIL 2009

this page last updated Friday, 13-Mar-2009 8:46 AM

THE AMERICAN INSTITUTE OF ARCHITECTS

CND Project - BETA SITE - under development

AIA Home > SBSE Home > Teaching Resources > Carbon Neutral Design > Carbon Calculation Tools > Survey of Tools

Project Introduction

- What is Carbon Neutral Design?
- Carbon Neutral Design Process
- Carbon Neutral Design Strategies
- Carbon Calculation Protocols
- Carbon Calculation Tools

Survey of Tools

- > Energy Modeling Software
- > Daylighting / Lighting Software
- > 3-D Modeling Software
 > Building Information Modeling
- Software > LCA Tools
- CCA TOURS
- Rating Systems
 Sun Angle Calculators
- Carbon Calculators
- > Climate Data Sources
- > Physical Modeling Tools
- > Top 10 Web Sites List

Tools More.

Carbon Neutral Case Studies

- 🖪 Carbon Neutral Teaching
- Resources

🖸 Links

The Carbon Neutral Design Project:

Carbon Calculation Tools:

Survey of Available Tools

Note #1:Where professors associated with the Carbon Neutral Design Project have used the software in their coursework, their comments will be located below the software description and a link to their assignment hot linked to their name in the right hand column.

Note #2: It will be noted if the product is available as a FREE DOWNLOAD, ONLINE TOOL or purchased product. For pricing for products for purchase please visit the associated website.

Note #3: The required OS will be noted. Most of the Energy Programs are PC based only. For Mac users, it is recommended to run the programs using a PC simulator such as Bootcamp, Parallels or Virtual PC.

Note #4: Where possible, screenshots will be provided so that you can get an idea of the nature of the interface. These will be located in the right hand column. Click on the thumbnail for a larger version of the image.

Energy Modeli	ng Software	Click on the Image for a Screenshot!
Software Name	Description / URL / Comments	Professors / Projects
A Course in Climate Responsive Building Design	http://www.aud.ucla.edu/energy-design-tools/ FREE DOWNLOAD (<i>software mostly PC</i>) The software and problems sets have been provided by Professor Emeritus Murray Milne to assist designers in understanding Climate Responsive Building Design. Scroll towards the bottom of the above linked page for more information, and to access the course materials.	
Building Design Advisor	http://gaia.lbl.gov/BDA/ (PC only) A powerful buildings design tool that will unify various specialized tools previously developed at LBNL makes it easy to compare design alternatives and includes multimedia resources such as a case-study library.	
Climate Consultant 4	http://www.aud.ucla.edu/energy-design-tools/ FREE DOWNLOAD (PC only) This program graphically displays climate data in either metric or imperial units in dozens of ways useful to architects including monthly bar charts, timetable charts, and psychrometric charts, sun shading charts, and sun dial charts. 3-D plots show temperatures, humidity, radiation, and sky cover. The "Wind Wheel" graphics shows velocity	

Remaining "Wicked Problems"

#1 – Building Size and Shape

- Most carbon neutral or ZED buildings to date are small
- No ZED buildings at a large scale to examine or emulate
- Buildings must be designed with a thin plan to allow for daylighting
- Tall buildings will have limited roof area for the installation of PV arrays
- Solar potential of wall areas needs to be studied

#2 - Location

- Most current ZED buildings have been constructed in rural areas
- Rural areas have a higher potential for solar harvesting, wind harvesting, installation of renewables, fresh air, carbon sequestration through use of the property/green space
- Urban areas will have severe issues with overshadowing and other limits on the installation of renewables
- Urban areas have limited site area

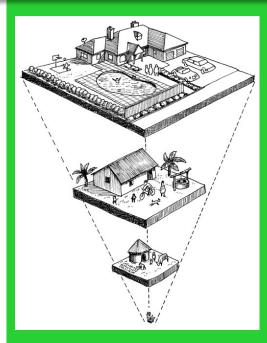
#3 – Natural Ventilation

- A key way to reduce the energy required to power a building is via the elimination of A/C
- Not all buildings can tolerate the resulting humidity or fluctuations in interior environment that can result from no A/C
- Urban environments can be too "dirty" for natural ventilation
- Urban environments can be too noisy for natural ventilation

#4 – Severe climates

- Severe climates will require more energy to heat and cool buildings
- Northern climates have limited solar potential for both daylighting and passive heating
- Hot-humid climates may require additional energy to bring interior environments to a state of reasonable comfort

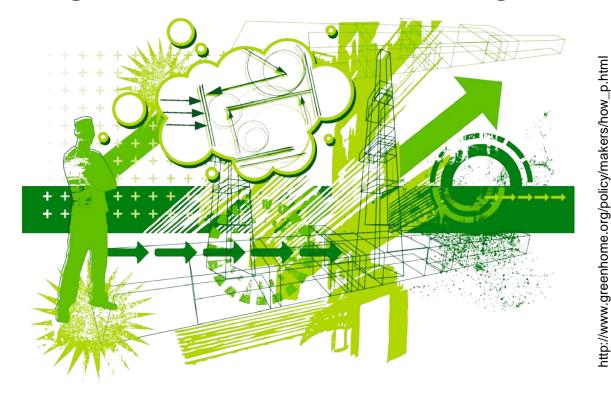
#5 – Fee structures


- The bottom line in reduction is to consider building less
- Fees are normally based as a percentage of construction cost
- Disincentive to reduce scope of building as it reduces income
- Need to find a way to link fees to energy savings
- Need to have additional fees to properly engineer the synchronized systems of carbon neutral buildings

Smaller is better

- *Simple!*...less building results in less embodied carbon; i.e. less carbon from materials used in the project, less requirements for heating, cooling and electricity....

- Re-examine the building program to see what is *really* required
- How is the space to be used?
- Can the program benefit from more inventive double uses of spaces?
- Can you take advantage of outdoor or more seasonally used spaces?
- How much building do you *really need?*



Calculating your "ecological footprint"

... can naturally extend to an understanding of your "carbon footprint"

#6 – Integrated Design

Carbon Neutral cannot be done without the highest level of early and continued cooperation amongst the client, architect and engineers

What IS the **difference** between a Sustainable Building and a Carbon Neutral Building?

- Sustainable building does not equal Carbon Neutral Building

- Sustainable building prefers renewable materials
- Carbon Neutral Building looks for Carbon emission impacts in materials use

- Sustainable building seeks to reduce energy consumption for its heating and cooling systems

- Carbon Neutral building looks for Zero Net Energy in its heating and cooling systems

What ARE the KEY STRATEGIES needed to design to a state of CARBON NEUTRALITY?

#1 - Reduce loads/demand first (passive design, daylighting, shading, orientation, etc.)

#2 - **Meet loads efficiently and effectively** (energy efficient lighting, high-efficiency MEP equipment, controls, etc.)

#3 - Use on-site generation/renewables to meet energy needs (doing the above steps *before* will result in the need for much smaller renewable energy systems, making carbon neutrality achievable.)

What are the ARCHITECTURAL IMPLICATIONS of designing to Zero Carbon?

- increased impact of plan and section design in achieving reduced energy requirements
- increased importance of building orientation, siting and treatment of site both during and after construction
- greater need for integrated design process and coordination with consultants from outset of project
- narrower scope of "acceptable" materials
- more energy efficient "systems"
- more highly glazed (daylighting) and insulated buildings

What is the **POTENTIAL** of designing a building to a state of Carbon Neutrality?

- Ability to effect a reduction in CO₂ emissions
- Ability to increase the likelihood of creating a regenerative or restorative building
- Ability to exceed LEEDTM design levels
- Ability to create a building that is superior in its durability
- Ability to deliver a building that is extremely low in its energy related operating costs and life cycle costs
- Ability to create a "conscience free" building